a2 United States Patent

Gruber et al.

US009245496B2

US 9,245,496 B2
Jan. 26, 2016

(10) Patent No.:
(45) Date of Patent:

(54) MULTI-MODE MEMORY ACCESS
TECHNIQUES FOR PERFORMING
GRAPHICS PROCESSING UNIT-BASED
MEMORY TRANSFER OPERATIONS

(71) Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

(72) Inventors: Andrew E. Gruber, Arlington, MA
(US); Tao Wang, Sunnyvale, CA (US);
Shambhoo Khandelwal, Santa Clara,
CA (US)

(73) Assignee: QUALCOMM Incorporated, San
Diego, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 374 days.

(21) Appl. No.: 13/725,393

(22) Filed: Dec. 21, 2012
(65) Prior Publication Data
US 2014/0176586 Al Jun. 26, 2014
(51) Imt.ClL
G09G 5/39 (2006.01)
G09G 5/36 (2006.01)
GO6F 12/06 (2006.01)
G09G 5/393 (2006.01)
G09G 5/395 (2006.01)
GO6F 12/08 (2006.01)
(52) US.CL
CPC G09G 5/363 (2013.01); GOG6F 12/0607

(2013.01); GOGF 12/0875 (2013.01); GO9G
5/393 (2013.01); GO9G 5/395 (2013.01); GO6F
2212/1021 (2013.01); GOGF 2212/455
(2013.01); GO6F 2212/601 (2013.01)

(58) Field of Classification Search
CPC ... G09G 5/39; GO09G 5/393; G09G 2360/123;
GO6T 1/60; GOGF 12/00
USPC ittt 345/531, 540
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,396,597 A 3/1995 Bodin et al.
5,948,081 A 9/1999 Foster
6,564,304 Bl 5/2003 Van Hook et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1191445 3/2002

OTHER PUBLICATIONS
International Search Report and Written Opinion—PCT/US2013/
071283—ISA/EPO—Apr. 3, 2014, 10 pages.

(Continued)

Primary Examiner — Hau Nguyen
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

This disclosure describes techniques for performing memory
transfer operations with a graphics processing unit (GPU)
based on a selectable memory transfer mode, and techniques
for selecting a memory transfer mode for performing all or
part of a memory transfer operation with a GPU. In some
examples, the techniques of this disclosure may include
selecting a memory transfer mode for performing at least part
of'a memory transfer operation, and performing, with a GPU,
the memory transfer operation based on the selected memory
transfer mode. The memory transfer mode may be selected
from a set of atleast two different memory transfer modes that
includes an interleave memory transfer mode and a sequential
memory transfer mode. The techniques ofthis disclosure may
beused to improve the performance of GPU-assisted memory
transfer operations.

50 Claims, 29 Drawing Sheets

=
[

| SOFTWARE APPLICATION

! 3

GRAPHICS API
2%

GPU DRIVER
28

| OPERATING SYSTEM
H 36

e

i
: i
BUS 1§

MEMORY SUBSYSTEM
8

MEMORY
2

SOURCE SURFACES
2

DESTINATION SURFACE
44

US 9,245,496 B2
Page 2

(56)

6,956,578
7,580,042
8,035,647
2003/0048276
2011/0072190
2011/0157200
2011/0276735
2013/0179645

References Cited
U.S. PATENT DOCUMENTS

B2 10/2005 Kuo et al.

B2* 82009 Chungetal.

Bl 10/2011 Bittel et al.
Al 3/2003 Wasserman et al.
Al 3/2011 Borracini et al.

Al* 6/2011 Huretal. ...
Al* 11/2011 Choetal.

Al* 7/2013 Matsuo etal.

....... 345/566

OTHER PUBLICATIONS
Novak et al, “GPU Computing: Data-Parallel Algorithms,”
Karlsruhe Institute of Technology, XP055160009, Feb. 3, 2011,
(https://cg.ivd kit.edu/downloads/GPUComputing_ assignment_ 2.
pdf), 9 pp.
Second Written Opinion from International Application No. PCT/
US2013/071283, dated Jan. 14, 2015, 7 pp.
International Preliminary Report on Patentability from International
345/543 Application No. PCT/US2013/071283, dated Mar. 25, 2015, 8 pp.

e 710/110 . .
....... 711/151 * cited by examiner

U.S. Patent Jan. 26, 2016 Sheet 1 of 29 US 9,245,496 B2

COMPUTING DEVICE
) MEMORY SUBSYSTEM
h 8
MEMORY
CPU CONTROLLER |« »] MEMORY
6 22
20
<\
USER
INTERFACE BUS 18 GPU
== 10
4
A
v Y
DISPLAY GPU
D'S:’é-AY »| INTERFACE CACHE
- 14 12

FIG. 1

U.S. Patent Jan. 26, 2016 Sheet 2 of 29 US 9,245,496 B2
CPU GPU
6 10
SOFTWARE APPLICATION COMMAND ENGINE
24 32
\ 4 RASTER OPERATIONS
GRAPHICS API UNIT
26 34
¥ BUFFER
GPU DRIVER 36
2"8- 5 A
\ Y \ 4
READ WRITE
OPERATING SYSTEM ENGINE ENGINE
30 38 40
< BUS 18 >
MEMORY SUBSYSTEM
8
MEMORY
22
SOURCE SURFACES
42

FIG. 2

DESTINATION SURFACE
44

U.S. Patent Jan. 26, 2016 Sheet 3 of 29 US 9,245,496 B2

CPU GPU
6 10
SOFTWARE APPLICATION COMMAND ENGINE
24 32
A 4 RASTER OPERATIONS
GRAPHICS API UNIT
26 34
Y BUFFER
GPU DRIVER 36
< A A
+ Y ¥
READ WRITE
OPERATING SYSTEM ENGINE ENGINE
30 38 20
< BUS 18 >
MEMORY SUBSYSTEM
NS :
MEMORY
22
SOURCE SURFACES

MEMORY 42
CONTROLLER K BUS 46) -
20

DESTINATION SURFACE
44

FIG. 3

U.S. Patent Jan. 26, 2016 Sheet 4 of 29 US 9,245,496 B2
cpPU GPU
6 10
SOFTWARE APPLICATION COMMAND ENGINE
24 32
L 4 RASTER OPERATIONS
GRAPHICS API UNIT
26 34
A BUFFER
GPU DRIVER 36
;& A A
v Y Y
READ WRITE
OPERATING SYSTEM ENGINE ENGINE
30 38 40

ﬁ

< BUS 18

MEMORY
SUBSYSTEM
8

NS

MEMORY
22

SOURCE SURFACES
42

DESTINATION SURFACE
44

FIG. 4

U.S. Patent Jan. 26, 2016 Sheet 5 of 29 US 9,245,496 B2

SOURCE SURFACE DESTINATION SURFACE

50 ~ - 52

DESTINATION
REGION
56

\
X SOURCE $

REGION
34

FIG. 5

U.S. Patent

Jan. 26, 2016

Sheet 6 of 29

FIRST SOURCE

58\

SURFACE

\ FIRST

64

SOURCE REG!ON%

60\

US 9,245,496 B2

SECOND SOURCE
SURFACE

FIG. 6

% seconn

SOURCE REGION

66

RASTER
OPERATION
70

DESTINATION
REGION

68

62 -/ DESTINATION SURFACE

U.S. Patent Jan. 26, 2016 Sheet 7 of 29 US 9,245,496 B2

MEMORY
22
50 ~, SOURCE SURFACE DESTINATION SURFACE _ 55
i‘é‘é‘fgﬁ DESTINATION
4 REGION
24 56

N n

A\ ya

SOURCE DESTINATION
DATA DATA

GPU
10

FIG.7

US 9,245,496 B2

Sheet 8 of 29

Jan. 26, 2016

U.S. Patent

oL
Ndo

\7

8 'Old

viva viva 2odN0S
NOILYNILS3Q 304NO0S LMl
dNOD3S
/ //
_ A, 9
A zom_wwmm NOIDIY ¥e)
32MNOS ANOD3S NOIDTIY
NOILYNILS3a 394N0S LS4
_/ _/
%9 "3oV4uNS NOILYNILSIA 09 30v4uns Jovduns - 88
39UNOS ANOJIS I94N0S LS4
F44
AHOWIW

U.S. Patent Jan. 26, 2016 Sheet 9 of 29 US 9,245,496 B2

Time|Read Engine | Write Engine{ Read Bus Write Bus | Memory Controller | Memory Bus
1 Readl
2 Read2 ReadCommandl
3 Read3 ReadCommand2
4 Read4 ReadCommand3 | ReadDatal
5 ReadDatal ReadCommand4 | ReadData2
6 Writel ReadData2 | WriteDatal ReadData3
7 Read5 Write2 ReadData3 | WriteData2 ReadDatad
8 Readb Write3 ReadDatad | WriteData3
9 Read? Writed WriteData4
10 Read8 WriteCommandl | WriteDatal
11 ReadCommand5
12
13 ReadData5
14 ReadData5
15 Write5 WriteData5
16 Read9 WriteCommand2 | WriteData2
17 ReadCommandb
18
19 ReadData6
20 ReadData6
21 Write6 WriteDatab
22 Readl10 WriteCommand3 | WriteData3
23 ReadCommand?
24
25 ReadData?
26 ReadData7
27 Write?7 WriteData7
28 Readl1l WriteCommand4 | WriteData4d
29 ReadCommand8
30
31 ReadData8
32 ReadData8
33 Write8 WriteData8
34 Readl2 WriteCommand5 | WriteData5b
35 ReadCommand9
36
37 ReadData9
38 ReadData%

FIG. 9A

U.S. Patent

Jan. 26, 2016 Sheet 10 of 29 US 9,245,496 B2

Time|Read Engine| Write Engine| Read Bus | Write Bus | Memory Controller| Memory Bus

39 Write9 WriteData9

40 WriteCommand6 | WriteDatab

41 ReadCommand10

42

43 ReadDatal0

44 ReadDatal0

45 Writel0 WriteDatalO

46 WriteCommand7 | WriteData7

47 ReadCommandll

48

49 ReadDatall

50 ReadDatall

51 Writell WriteDatall

52 WriteCommand8 | WriteData8

53 ReadCommand12

54

55 ReadDatal2

56 ReadDatal2

57 Writel2 WriteDatal2

58 WriteCommand9 | WriteData9

59 WriteCommand10 | WriteDatal0

60 WriteCommand11 | WriteDatall

61 WriteCommand12 |WriteDatal2

FIG. 9B

U.S. Patent Jan. 26, 2016 Sheet 11 of 29 US 9,245,496 B2

Time|Read Engine| Write Engine| Read Bus Write Bus | Memory Controlier{ Memory Bus
1 Readl
2 Read2 ReadCommandl
3 Read3 ReadCommand2
4 Read4 ReadCommand3 | ReadDatal
5 ReadDatal ReadCommand4d | ReadData2
5 ReadData2 ReadData3
7 ReadData3 ReadDatad
8 ReadDatad
9 Writel WriteDatal
10 Write2 WriteData2 | WriteCommandl | WriteDatal
11 Write3 WriteData3 | WriteCommand2 | WriteData2
12 Writed WriteDatad | WriteCommand3 | WriteData3
13 Read5 WriteCommand4 | WriteDatad
14 Read6 ReadCommand5
15 Read? ReadCommandb
16 Read8 ReadCommand7 | ReadDatab
17 ReadData5 ReadCommand8 | ReadDatab
18 ReadDatab ReadData7
19 ReadData7 ReadData8
20 ReadData8
21 Write5 WriteData5s
22 Write6 WriteData6 | WriteCommand5 | WriteData5
23 Write7 WriteData7 | WriteCommand6 | WriteData6
24 Write8 WriteData8 | WriteCommand?7 | WriteData7
25 Read9 WriteCommand8 | WriteData8
26 Readl0 ReadCommand®
27 Readll ReadCommand10
28 Readl12 ReadCommandll | ReadDataS
29 ReadData9 ReadCommandl12? | ReadDatal0
30 ReadDatal0l ReadDatall
31 ReadDatall ReadDatal2
32 ReadDatal2
33 Write9 WriteData2
34 Writel0 WriteDatal0| WriteCommand9 | WriteData9
35 Writell WriteDatall| WriteCommand10 {WriteData10
36 Writel2 WriteDatal2| WriteCommand11 |WriteDatall
37 WriteCommand12 {WriteDatal2

FIG. 10

U.S. Patent Jan. 26, 2016 Sheet 12 of 29 US 9,245,496 B2

Time | Read Eng. | Write Eng.| Read Bus Write Bus | Memory Controller | Memory Bus
1 ReadlA
2 ReadlB ReadCommandlA
3 Read2A ReadCommand1B
4 Read2B ReadCommand2A | ReadDatalA
5 ReadDatalA ReadCommand2B | ReadDatalB
6 ReadDatalB ReadData2A
7 Writel | ReadData2A | WriteDatal ReadData2B
8 Read3A ReadData2B
9 Read3B Write2 WriteData2
10 | Read4A WriteCommandl | WriteDatal
11 | Read4B ReadCommand3A
12 ReadCommand3B
i3 ReadData3A
14 ReadData3A ReadData3B
15 ReadData3B
16 Write3 WriteData3
17 | Read5A WriteCommand2 | WriteData?2
18 | Read5B ReadCommand4A
19 ReadCommand4B
20 ReadDatadA
21 ReadDatadA ReadDatadB
22 ReadDatadB
23 Writed WriteData4
24 { Read6A WriteCommand3 | WriteData3
25 { Read6B ReadCommand5A
26 ReadCommandSB
27 ReadDatabA
28 ReadDatabA ReadData5B8
29 ReadData5B
30 Write5 WriteData5
31 Read7A WriteCommand4 | WriteData4
32 | Read7B ReadCommandbA
33 ReadCommandbB
34 ReadData6A
35 ReadDatabA ReadData6B
36 ReadData6B
37 Writeb WriteData6

FIG. 11A

U.S. Patent

Jan. 26, 2016

Sheet 13 of 29

US 9,245,496 B2

Time | Read Eng. | Write Eng.| Read Bus Write Bus | Memory Controller | Memory Bus
38 | Read8A WriteCommandS | WriteData5
39 | Read8B ReadCommand7A
40 ReadCommand7B
41 ReadData’A
42 ReadData7A ReadData7B
43 ReadData7B
44 Write7 WriteData7
45 WriteCommand6 | WriteDatab
46 ReadCommandBA
47 ReadCommand8B
48 ReadData8A
49 ReadData8A ReadData8B
50 ReadData8B
51 Write8 WriteData8
52 WriteCommand7 | WriteData7
53 WriteCommand8 | WriteData8

FIG. 11B

U.S. Patent Jan. 26, 2016 Sheet 14 of 29 US 9,245,496 B2

Time | Read Eng.| Write Eng.| Read Bus Write Bus | Memory Controller | Memory Bus
1 ReadlA
2 ReadlB ReadCommandl1A
3 Read2A ReadCommand18
4 ReadZB ReadCommand2A | ReadDatalA
5 Read3A ReadDatalA ReadCommand2B | ReadDatalB
6 Read3B ReadDatalB ReadCommand3A | ReadData2A
7 ReaddA ReadData2A ReadCommand3B | ReadData2B
8 Read4B ReadData2B ReadCommand4A | ReadData3A
9 ReadData3A ReadCommand48 | ReadData3B
10 ReadData3B ReadDatadA
11 ReadDatadA ReadData4B
12 ReadDatadB
13 Writel WriteDatal
14 Write2 WriteData2 | WriteCommandl | WriteDatal
15 Write3 WriteData3 | WriteCommand2 | WriteData2
16 Writed WriteDatad | WriteCommand3 | WriteData3
17 Read5A WriteCommand4 | WriteDatad
18 | Read5B ReadCommand5A
19 | Read6A ReadCommand5B
20 | Read6B ReadCommand6A | ReadDataSA
21 | Read7A ReadData5A ReadCommand68 | ReadDataSB
22 | Read7B ReadData5B ReadCommand7A | ReadDatabA
23 | ReadBA ReadDatabA ReadCommand7B | ReadDatatB
24 | Read8B ReadData6B ReadCommandBA | ReadData7A
25 ReadData7A ReadCommand8B | ReadData7B
26 ReadData7B ReadData8A
27 ReadData&A ReadData8B
28 ReadData8B
29 Write5 WriteData5
30 Writeb WriteData6 | WriteCommand5 | WriteDatab
31 Write7 WriteData7 | WriteCommandé | WriteData6
32 Write8 WriteData8 | WriteCommand? | WriteData7
33 WriteCommand8 | WriteData8

FIG. 12

U.S. Patent Jan. 26, 2016 Sheet 15 of 29 US 9,245,496 B2

INITIATE MEMORY f 100
TRANSFER

:

102
B ISSUE READ REQUEST f

DATA
RECEIVED?

CONSUME DATA AND ISSUE | [106
WRITE REQUEST

108
YES

MORE DATATO
READ?

FIG. 13

U.S. Patent Jan. 26, 2016 Sheet 16 of 29 US 9,245,496 B2

INITIATE MEMORY 112
TRANSFER

:

J— 114
BEm— ISSUE READ REQUEST

CONSUMED
DATA?

MORE DATATO
READ?

FIG. 14

U.S. Patent

FIG. 15

Jan. 26, 2016 Sheet 17 of 29

US 9,245,496 B2

INITIATE MEMORY _{122
TRANSFER

DATA
RECEIVED?

CONSUME DATA AND ISSUE | 126
WRITE REQUEST

128

MORE DATATO
CONSUME?

130

U.S. Patent

FIG. 16

Jan. 26, 2016 Sheet 18 of 29 US 9,245,496 B2
INITIATE MEMORY 132
TRANSFER
* 134
i
—»| ISSUE READ REQUEST |e—

READ REQUESTS
2T

138
S

CEASE ISSUING READ
REQUESTS

140

UNCONSUMED
DATA2T1

142

CONSUME DATA AND ISSUE
WRITE REQUEST

UNCONSUMED
DATA=T2

CEASE ISSUING WRITE
REQUESTS

146
f

148

MORE DATATO
READ?

U.S. Patent

FIG. 17

Jan. 26, 2016 Sheet 19 of 29

US 9,245,496 B2

INITIATE MEMORY
TRANSFER

152
5

!

oo ISSUE READ REQUEST

154
'

s

READ REQUESTS
2T1

CEASE ISSUING READ
REQUESTS

158
’

UNCONSUMED
DATA=sT2

162

MORE DATATO
READ?

U.S. Patent Jan. 26, 2016 Sheet 20 of 29 US 9,245,496 B2

166
INITIATE MEMORY f
TRANSFER

168

UNCONSUMED
DATAz2T1

170
J

CONSUME DATA AND ISSUE
WRITE REQUEST

UNCONSUMED
DATA=T2

174
CEASE ISSUING WRITE |
REQUESTS

176

MORE DATATO
CONSUME?

178

FIG. 18

U.S. Patent

FIG. 19

Jan. 26, 2016

Sheet 21 of 29

US 9,245,496 B2

INITIATE MEMORY
TRANSFER

180
It

Y

ACTIVATE READ ENGINE

182
J

READ REQUESTS
z2T1

DEACTIVATE READ ENGINE

|

186
S

UNCONSUMED
DATAZT1

ACTIVATE WRITE ENGINE

190
i

UNCONSUMED
DATA=T2

DEACTIVATE WRITE
ENGINE

+ 196

MORE DATA TO
READ?

194
i

U.S. Patent Jan. 26, 2016 Sheet 22 of 29 US 9,245,496 B2

SELECT MEMORY TRANSFER 1202
MODE

l

PERFORM MEMORY TRANSFER 204
BASED ON SELECTED MEMORY j
TRANSFER MODE

FIG. 20

U.S. Patent Jan. 26, 2016 Sheet 23 of 29 US 9,245,496 B2

DETERMINE SIZE OF f2°6
MEMORY TRANSFER

SIZE >
THRESHOLD?

SELECT INTERLEAVE Izw
MEMORY TRANSFER MODE

SELECT SEQUENTIAL 1212
MEMORY TRANSFER MODE

FIG. 21

U.S. Patent Jan. 26, 2016 Sheet 24 of 29 US 9,245,496 B2

DETERMINE SCREEN f214
POSITION OF
DESTINATION REGION

:

SELECT SCREEN-ALIGNED f 216
BUFFER REGION

COMPLETE

SELECT INTERLEAVE f222
OVERLAP?

MEMORY TRANSFER MODE

SELECT SEQUENTIAL f224
MEMORY TRANSFER MODE

FIG. 22

U.S. Patent

Jan. 26, 2016 Sheet 25 of 29 US 9,245,496 B2
1 2 3 4 5
218
{ R i L ““"“"‘i
6 1K 8 9 10
, I
i |
i |
11 : 12 13 14 115
' P N R I
16 17 18 19 20

FIG. 23

U.S. Patent Jan. 26, 2016 Sheet 26 of 29 US 9,245,496 B2

DETERMINE COMPLEXITY J’ZZG
OF SHADER PROGRAM

228

COMPLEXITY >

SELECT SEQUENTIAL f23°
THRESHOLD?

MEMORY TRANSFER MODE

SELECT INTERLEAVE
MEMORY TRANSFER MODE

232
f

FIG. 24

U.S. Patent Jan. 26, 2016 Sheet 27 of 29 US 9,245,496 B2

DETERMINE SIZE OF 1234
SHADER PROGRAM

SIZE > 238

THRESHOLD?

SELECT SEQUENTIAL
MEMORY TRANSFER MODE

SELECT INTERLEAVE | 240

MEMORY TRANSFER MODE

FIG. 25

U.S. Patent Jan. 26, 2016 Sheet 28 of 29 US 9,245,496 B2

242

244
10 ?;é’},%ii;’éﬁk: CE NO SELECT SEQUENTIAL
BOTTLENECK? MEMORY TRANSFER MODE

SELECT INTERLEAVE 1245
MEMORY TRANSFER MODE

FIG. 26

U.S. Patent Jan. 26, 2016 Sheet 29 of 29 US 9,245,496 B2

248

SEQUENTIAL
MODE?

250 252
I S

CONFIGURE SMALL CONFIGURE LARGE
CACHE LINE SIZE CACHE LINE SIZE

FIG. 27

US 9,245,496 B2

1
MULTI-MODE MEMORY ACCESS
TECHNIQUES FOR PERFORMING
GRAPHICS PROCESSING UNIT-BASED
MEMORY TRANSFER OPERATIONS

TECHNICAL FIELD

This disclosure relates to graphics processing, and more
particularly, to techniques for performing memory transfer
operations with a graphics processor.

BACKGROUND

A graphics processing unit (GPU) is often used in a com-
puting device to handle and/or provide hardware acceleration
for one or more of the operations that are needed to display
graphics images. One class of operations that is commonly
handled by GPUs is memory transfer operations. Memory
transfer operations may include memory copy operations and
compositing operations. In some examples, the memory
transfer operations may be referred to as blit operations or
BLT operations (i.e., bit block transfer operations). Executing
these memory transfer operations may involve performing
numerous read and write operations with respect to an off-
chip memory that stores the source and destination data for
the memory transfer operation.

SUMMARY

This disclosure describes techniques for performing
memory transfer operations with a graphics processing unit
(GPU) based on a selectable memory transfer mode, and
techniques for selecting a memory transfer mode for perform-
ing all or part of a memory transfer operation with a GPU. In
some examples, the techniques for performing memory trans-
fer operations may use a GPU that is configured to selectively
switch between using an interleave memory transfer mode
and a sequential memory transfer mode for performing all or
part of a memory transfer operation. The interleave memory
transfer mode may cause the GPU to perform a memory
transfer operation based on a producer-consumer paradigm
where read requests and write requests are interleaved with
each other. The sequential memory transfer mode may cause
the GPU to perform a memory transfer operation such that the
GPU alternates between issuing groups of multiple, consecu-
tive read requests and groups of multiple, consecutive write
requests. In additional examples, the techniques for selecting
a memory transfer mode may use a host processor (e.g., a
CPU) and/or the GPU to select a memory transtfer modeto use
for all or part of the memory transfer operation based on one
or more criteria.

In one example, this disclosure describes a method that
includes selecting, with one or more processors, a memory
transfer mode for performing at least part of a memory trans-
fer operation. The memory transfer mode may be selected
from a set of at least two different memory transfer modes that
includes an interleave memory transfer mode and a sequential
memory transfer mode. The method further includes per-
forming, with a GPU, the memory transfer operation based on
the selected memory transfer mode.

In another example, this disclosure describes a device that
includes one or more processors configured to select a
memory transfer mode for performing at least part of a
memory transter operation. The memory transfer mode may
beselected from a set of at least two different memory transfer
modes that includes an interleave memory transfer mode and
a sequential memory transfer mode. The device further

10

15

20

25

30

35

40

45

50

55

60

65

2

includes a GPU configured to perform the memory transfer
operation based on the selected memory transfer mode.

In another example, this disclosure describes an apparatus
that includes means for selecting a memory transfer mode for
performing at least part of a memory transfer operation. The
memory transfer mode may be selected from a set of at least
two different memory transfer modes that includes an inter-
leave memory transfer mode and a sequential memory trans-
fer mode. The apparatus further includes means for perform-
ing the memory transfer operation based on the selected
memory transfer mode.

In another example, this disclosure describes a computer-
readable storage medium storing instructions that, when
executed, cause one or more processors to select a memory
transfer mode for performing at least part of a memory trans-
fer operation. The memory transfer mode may be selected
from a set of atleast two different memory transfer modes that
includes an interleave memory transfer mode and a sequential
memory transfer mode. The computer-readable storage
medium further stores instructions that, when executed, cause
one or more processors to perform the memory transfer
operation based on the selected memory transfer mode.

The details of one or more examples of the disclosure are
set forth in the accompanying drawings and the description
below. Other features, objects, and advantages of the disclo-
sure will be apparent from the description and drawings, and
from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram illustrating an example comput-
ing device that may be used to implement the multi-mode
memory transfer techniques of this disclosure and the
memory transfer mode selection techniques of this disclo-
sure.

FIG. 2 is a block diagram illustrating the CPU, the GPU
and the memory subsystem of the computing device in FIG. 1
in further detail.

FIG. 3 is a block diagram illustrating an example memory
subsystem that may be used in the example configuration
shown in FIG. 2.

FIG. 4 is a block diagram illustrating another example
memory subsystem that may be used in the example configu-
ration shown in FIG. 2.

FIG. 5 is a conceptual diagram illustrating an example
single source memory transfer operation according to this
disclosure.

FIG. 6 is a conceptual diagram illustrating an example
multiple source memory transfer operation according to this
disclosure.

FIG. 7 is a conceptual diagram illustrating an example
GPU-assisted single source memory transfer operation
according to this disclosure.

FIG. 8 is a conceptual diagram illustrating an example
GPU-assisted multiple source memory transfer operation
according to this disclosure.

FIGS. 9A and 9B are a timing diagram that illustrate
example timing characteristics for a single source memory
transfer operation that is performed according to the inter-
leave memory transfer mode of this disclosure.

FIG. 10 is a timing diagram that illustrates example timing
characteristics for a single source memory transfer operation
that is performed according to the sequential memory transfer
mode of this disclosure.

FIGS. 11A and 11B are a timing diagram that illustrate
example timing characteristics for a multiple source memory

US 9,245,496 B2

3

transfer operation that is performed according to the inter-
leave memory transfer mode of this disclosure.

FIG. 12 is a timing diagram that illustrates example timing
characteristics for a multiple source memory transfer opera-
tion that is performed according to the sequential memory
transfer mode of this disclosure.

FIG. 13 is a flow diagram illustrating an example technique
for performing a memory transtfer operation according to the
interleave memory transfer techniques of this disclosure.

FIG. 14 is a flow diagram illustrating an example technique
for issuing read requests according to the interleave synchro-
nization mode of this disclosure.

FIG. 15 is a flow diagram illustrating an example technique
for issuing write requests according to the interleave synchro-
nization mode of this disclosure.

FIG. 16 is a flow diagram illustrating an example technique
for performing a memory transtfer operation according to the
sequential memory transfer techniques of this disclosure.

FIG. 17 is a flow diagram illustrating an example technique
for issuing read requests according to the sequential synchro-
nization mode of this disclosure.

FIG. 18 is a flow diagram illustrating an example technique
for issuing write requests according to the sequential syn-
chronization mode of this disclosure.

FIG. 19 is a flow diagram illustrating an example technique
for performing a memory transtfer operation according to the
sequential memory transfer mode of this disclosure.

FIG. 20 is a flow diagram illustrating an example technique
for performing a memory transfer operation according to this
disclosure.

FIGS. 21 and 22 are flow diagrams illustrating example
techniques for selecting a memory transfer mode for perform-
ing a memory transfer operation according to this disclosure.

FIG. 23 is a conceptual diagram illustrating a screen with a
plurality of screen-aligned buffer regions and a destination
surface according to this disclosure.

FIGS. 24-26 are flow diagrams illustrating example tech-
niques for selecting a memory transfer mode for performing
a memory transfer operation according to this disclosure.

FIG. 27 is a flow diagram illustrating an example technique
for performing a memory transfer operation according to this
disclosure.

DETAILED DESCRIPTION

This disclosure describes techniques for performing
memory transfer operations with a graphics processing unit
(GPU) based on a selectable memory transfer mode, and
techniques for selecting a memory transfer mode for perform-
ing all or part of a memory transfer operation with a GPU. In
some examples, the techniques for performing memory trans-
fer operations may use a GPU that is configured to selectively
switch between using an interleave memory transfer mode
and a sequential memory transfer mode for performing all or
part of a memory transfer operation. The interleave memory
transfer mode may cause the GPU to perform a memory
transfer operation based on a producer-consumer paradigm
where read requests and write requests are interleaved with
each other. The sequential memory transfer mode may cause
a GPU to perform a memory transfer operation such that the
GPU alternates between issuing groups of multiple, consecu-
tive read requests and groups of multiple, consecutive write
requests. In additional examples, the techniques for selecting
a memory transfer mode may use a host processor (e.g., a
CPU) and/or the GPU to select a memory transtfer modeto use
for all or part of the memory transfer operation based on one
or more criteria.

10

15

20

25

30

35

40

45

55

60

65

4

Different memory transfer modes may be more efficient
than others for different types of memory transfer operations.
For example, the sequential memory transfer mode may gen-
erally be more efficient than the interleave memory transfer
mode for larger memory transfer operations, while the inter-
leave memory transfer mode may, in some cases, be more
efficient than the sequential memory transfer mode for
smaller memory transfer operations, particularly in the case
where the minimum amount of data that is accessed per read
request during the sequential memory transfer mode is large.
The techniques of this disclosure may be used to selectively
use different memory transfer modes that are more suited for
particular types of memory transfer operations, thereby
improving the performance of memory transfer operations by
a GPU.

Memory transfer operations may include memory copy
operations and compositing operations. In some examples,
the memory transfer operations may be referred to as blit (i.e.,
bit block transfer) operations. Memory copy operations may
involve copying data from a source region of a source surface
to a destination region of a destination surface. That is, the
GPU may read data from a source region of a source surface
and write an exact replica of the data contained in the source
region of the source surface to a destination region of a
destination surface.

Compositing operations may involve combining at least
two different source regions of the same or different source
surfaces in some fashion, and writing the combination of the
source regions to a destination region of a destination surface.
In some cases, one or more of the source surfaces may be the
same surface as the destination surface for a compositing
operation. For example, a compositing operation may involve
reading a single source region and a single destination region,
blending the two together, and writing the blended result back
to the destination region.

In some examples, when performing a compositing opera-
tion, the different source regions may be combined according
to a raster operation, which may be different for different
instances of the compositing operation. The raster operation
may be an operation that specifies how the bits are to be
combined for a particular compositing operation. In some
examples, the raster operations may include bitwise opera-
tions, such as, e.g., Boolean logic operations. The Boolean
logic operations may include, e.g., bitwise AND, OR, NOT
and/or XOR operations.

In additional examples, the raster operations may include
blending operations (e.g., alpha blending operations). In
some examples, a blending operation may specify a source
pixel multiplier and a destination pixel multiplier to be used
during execution of the blending operation. In such examples,
during execution of the blending operation, a source pixel
value (e.g., a source pixel color value and/or a source pixel
alpha value) may be multiplied by the source pixel multiplier
to produce a first product, a corresponding destination pixel
value (e.g., adestination pixel color value and/or a destination
pixel alpha value) may be multiplied by the destination pixel
multiplier to produce a second product, and the sum ofthe two
products may be added together to produce a destination
value for the pixel location. Other types of blending opera-
tions are also possible. In further examples, the different
source regions may be combined according to a shader pro-
gram executing on the GPU.

The source and destination surfaces used in a memory
transfer operation may be the same or different surfaces, and
may each correspond to a two-dimensional array of pixel
data. The pixel data may include red, green, blue (RGB) color
values and, in some cases, an alpha value (A) for each pixel in

US 9,245,496 B2

5

the surface. Because the surfaces correspond to a two-dimen-
sional array of pixel data, the pixel data for an individual pixel
location in the surface may be addressed by row and column
coordinates. Each of the source regions used in a memory
transfer operation may correspond to all or a subset of a
respective source surface. Similarly, the destination region
used in a memory transfer operation may correspond to all or
a subset of the destination surface. The source and destination
regions may be the same size and shape, and are typically, but
not necessarily, rectangular-shaped regions.

When a GPU performs a memory transfer operation, the
source surfaces and the destination surfaces used for memory
transfer operation are typically stored in an off-chip memory.
In other words, the memory may be formed on, located on,
and/or disposed on a microchip, an integrated circuit, and/or
a die that is different than the microchip, integrated circuit,
and/or die upon which GPU is formed, located, and/or dis-
posed. The memory may be communicatively coupled to the
GPU via one or more buses and, in some cases, a memory
controller.

When performing a memory copy operation, the GPU may
read data from each of'the pixel locations in the source region
and write the data that was read from the source region to
corresponding pixel locations in the destination region. Simi-
larly, the performance of a compositing operation may
involve reading the data from each of the locations in the
multiple source regions, combining the data, and writing the
combined data to the destination region. Therefore a single
memory transfer operation may involve the issuance of
numerous read requests and numerous write requests by the
GPU to an off-chip memory via one or more buses.

To perform the memory read and write operations for a
memory transfer operation a GPU may, in some examples,
use a read engine and a write engine. The read engine may
handle the issuance of read requests for the memory transfer
operation and the write engine may handle the issuance of
write requests for the memory transfer operation. When per-
forming a memory transfer operation using the interleave
memory transfer mode, the read and write engines may utilize
a producer-consumer type of synchronization where the read
client issues an initial amount of read requests, and upon
receiving source data in response to a read request, the write
client may consume the data and issue a corresponding write
request to the memory. Upon consumption of the source data,
the read engine may proceed to issue a subsequent read
request. This type of loose synchronization between the read
and write engines may cause the read and write streams to
become intermingled and/or interleaved with each other.
Therefore, when performing memory transfer operations
based on a interleave memory transfer mode, the memory and
the bus are frequently switching between servicing read
requests and servicing write requests.

For some types of memories, such as, e.g., a double data
rate synchronous dynamic random-access memory (DDR
SDRAM), a certain amount of processing time overhead may
be associated with each time the memory and/or bus needs to
switch between servicing a read operation and servicing a
write operation. For example, each time a switch occurs
between servicing read and write requests, a particular
amount of idle time may be needed to let the bus settle before
the bus changes directions. This processing time overhead
may be referred to as read-write turnaround time. As another
example, if the read and write streams are accessing different
pages of the memory, the memory may need to open and close
different pages and/or banks of memory each time a switch

10

20

40

45

50

6

occurs between servicing read and write requests, thereby
adding additional processing time overhead to the read-write
switch.

Memory transfer operations, such as compositing and blit-
ting operations, are often memory limited. That is, the
memory read and write requests needed to perform such
operations often becomes a performance bottleneck for the
GPU. Therefore, a read-write engine synchronization scheme
that results in a large amount of switching between the ser-
vicing of read and write requests may not only reduce the
memory access efficiency of the GPU, but may also reduce
the performance of the overall memory transfer operation.

The sequential memory transfer mode described in this
disclosure may be used to reduce the read-write turnaround
overhead that occurs when performing memory transfer
operations in a GPU, for example, by issuing sequences of
multiple, consecutive read requests and sequences of mul-
tiple, consecutive write requests to a memory during separate
time intervals. Because the read and write requests are issued
in groups of multiple, consecutive requests during separate
time intervals, the number of times that the system memory
and/or bus may need to switch between servicing read and
write requests may be reduced, thereby reducing the read-
write turnaround overhead for the memory transfer operation.

For relatively large memory transfer operations, the
reduced read-write turnaround overhead provided by the
sequential memory transfer mode may cause the sequential
memory transfer mode to be more efficient at performing
memory transfer operations than the interleave memory
transfer mode. For smaller memory transfer operations, how-
ever, the extra overhead needed to perform the synchroniza-
tion in the sequential memory transfer mode may, in some
cases, outweigh the benefits of reducing the read-write turn-
around overhead. Moreover, in cases where the minimum
amount of data transferred from the memory to the GPU for a
read request during the sequential memory transfer mode is
relatively large compared to the size of the memory transfer
operation (e.g., a BLT operation), the sequential memory
transfer mode may cause extraneous data to be read from the
memory, thereby reducing the performance of the memory
transfer operation.

Providing the ability to selectively switch between a
sequential memory transfer mode and an interleave memory
transfer mode for particular memory transfer operations or
portions thereof according to the techniques of this disclosure
may allow a GPU to selectively use the sequential memory
transfer mode to increase memory efficiency in cases where
the benefits of such a mode are not outweighed and/or dimin-
ished by other factors, and to use the interleave memory
transfer mode in cases where the benefits of the sequential
memory transfer mode are outweighed and/or diminished by
other factors. By allowing a GPU to selectively use different
memory transfer modes that are better suited for particular
types (e.g., sizes) of memory transfer operations, the tech-
niques of this disclosure may be able to improve the overall
performance of a GPU that performs a variety of different
types of memory transfer operations.

In some examples, a GPU and/or a GPU driver executing
on an application processor may select a memory transfer
mode for performing all or part of a memory transfer opera-
tion based on a size of the memory transfer operation. The
size of the memory transfer operation may refer to the amount
of data to be transferred by the memory transfer operation.
For example, if the size of the memory transfer operation is
greater than a threshold, then the GPU and/or the GPU driver
may select the sequential memory transfer mode as the
memory transfer mode to be used for performing all or part of

US 9,245,496 B2

7

the memory transfer operation. As another example, if the
size of the memory transfer operation is not greater than a
threshold, then the GPU and/or the GPU driver may select the
interleave memory transfer mode as the memory transfer
mode to be used for performing all or part of the memory
transfer operation.

In additional examples, a GPU and/or a GPU driver execut-
ing on an application processor may select a memory transfer
mode for performing all or part of a memory transfer opera-
tion based on an amount of overlap a destination region
defined for a memory transfer operation has with a fixed,
screen-aligned buffer region. In some cases, a surface may
correspond to the pixels contained on a display monitor or
screen. The screen may be subdivided into a plurality of
regions each having a fixed size that corresponds to the size of
the buffer that is used to store the read data. These subdivided
regions may be referred to as fixed, screen-aligned buffer
regions. In such examples, when operating in the sequential
memory transfer mode, the GPU may be configured to trans-
fer data between the memory and the GPU in data units of a
fixed size that correspond to the size of the fixed, screen-
aligned buffer regions.

If a destination region partially, but not fully, covers a
particular fixed, screen-aligned buffer region, then the GPU
and/or the GPU driver may select the interleave memory
transfer mode as the memory transfer mode for that region of
the screen because the buffer in which the read data will be
stored will be not be fully utilized. If the sequential memory
mode were selected in such a case, the fixed size memory read
would cause extraneous data to be read from the memory,
which may outweigh any read-write turnaround savings
which would occur by using the sequential memory transfer
mode. On the other hand, if a destination region fully covers
aparticular fixed, screen-aligned buffer region, then the GPU
and/or the GPU driver may select the sequential memory
transfer mode as the memory transfer mode for that region of
the screen because the buffer in which the read data will be
stored will be fully utilized and no time would be wasted
retrieving extraneous data.

In further examples, a GPU and/or a GPU driver executing
on an application processor may select a memory transfer
mode for performing all or part of a memory transfer opera-
tion based on a size and/or a complexity of a shader program
that is used to perform the memory transfer operation (e.g., a
compositing operation). The size and/or the complexity of the
shader program may be indicative of whether the perfor-
mance of the shader operations for a particular memory trans-
fer operation is likely to be a performance bottleneck for the
memory transter operation.

In such examples, if the size and/or complexity of the
shader program is less than a threshold, then the GPU and/or
the GPU driver may determine that the performance of the
shader operations is not likely to be a performance bottleneck
for the memory transfer operation. In such a case, the GPU
and/or the GPU driver may select the sequential memory
transfer mode for the memory transfer operation because it is
possible that memory access efficiency may be a performance
bottleneck for the memory transfer operation. On the other
hand, if the size and/or complexity of the shader program is
greater than a threshold, then the GPU and/or GPU driver may
determine that the performance of the shader operations is
likely to be a performance bottleneck for the memory transfer
operation. In such a case, the GPU and/or GPU driver may
select the interleave memory transfer mode for the memory
transfer operation because an increase in memory efficiency
is not needed and because the deferral of read operations that
occurs in the sequential memory transfer mode could have the

20

25

30

35

40

45

55

8

potential to starve the shader program of data, which is typi-
cally not desirable if the shader program is a performance
bottleneck.

In additional examples, the GPU may select and configure
a cache line size for a cache based on the selected memory
transfer mode. The cache may correspond to a buffer in the
GPU in which the read data is stored. In such examples, if the
memory transfer mode is the sequential memory transfer
mode, then the GPU may select a cache line size that is equal
to the entire capacity of the cache in order to allow as large of
a grouping of read and write operations as possible. On the
other hand, if the memory transfer mode is the interleave
memory transfer mode, then the GPU may select a cache line
size that is less than the entire capacity of the cache in order to
allow multiple regions of data to be simultaneously cached
when servicing the interleaved requests.

According to some aspects of this disclosure, techniques
are described for signaling a memory transfer mode to be used
by a GPU for performing a memory transfer operation. The
signaling techniques may allow a GPU driver and/or a user
application executing on a host application processor to con-
trol the memory transfer mode that is used for performing a
memory transter operation.

In some examples, an information field that specifies a
memory transfer mode may be added to one or more existing
GPU commands that are configured to be executed by the
GPU. The information field may, in some cases, be a single
mode bit that specifies a memory transfer mode to be used for
a memory transfer operation associated with the instruction.
For example, a graphics driver may service a user-level blit
command by specifying the source and destination memory
regions to the GPU and by issuing a (three-dimensional) 3D
draw call instruction to the GPU. The 3D draw call instruction
may include a mode bit indicating the memory transfer mode
to be used during execution of the 3D draw call instruction.
The GPU may be configured to perform a memory transfer
operation based on the memory transfer mode specified in the
instruction.

In additional examples, the GPU may include a memory
transfer mode state variable that specifies a memory transfer
mode to be used for performing a memory transfer operation.
In such examples, a GPU command (e.g., a command issued
to the GPU from a GPU driver) may be used to program a state
of'the memory transfer mode state variable to a value indica-
tive of a memory transfer mode to be used for performing a
memory transfer operation. The GPU may be configured to
perform the memory transfer operation based on the state of
the memory transfer mode state variable.

In further examples, the memory transfer mode may be part
of'the GPU state that is modified as part of a GPU command
stream. The GPU command stream may include both state
register set-up commands as well as instructions (or instruc-
tion pointers) to code that is executed by one or more GPU
shader processors.

In additional examples, an instruction may be added to the
application programming interface (API) for the GPU driver.
The instruction may include a memory transfer mode indica-
tor that indicates a memory transfer mode to be used for
performing the memory transfer operation. The GPU driver
may be configured to cause the GPU to perform a memory
transfer operation based on the memory transfer mode indi-
cator. In this way, a user application may be able to specify the
memory transfer mode to be used by a GPU when performing
a memory transfer operation.

FIG. 1 is a block diagram illustrating an example comput-
ing device 2 that may be used to implement the multi-mode
memory transfer techniques of this disclosure and the

US 9,245,496 B2

9

memory transfer mode selection techniques of this disclo-
sure. Computing device 2 may comprise a personal computer,
a desktop computer, a laptop computer, a computer worksta-
tion, a video game platform or console, a wireless communi-
cation device (such as, e.g., a mobile telephone, a cellular
telephone, a satellite telephone, and/or a mobile telephone
handset), a landline telephone, an Internet telephone, a hand-
held device such as a portable video game device or a personal
digital assistant (PDA), a personal music player, a video
player, a display device, a television, a television set-top box,
a server, an intermediate network device, a mainframe com-
puter or any other type of device that processes and/or dis-
plays graphical data.

As illustrated in the example of FIG. 1, computing device
2 includes a user interface 4, a CPU 6, a memory subsystem
8, a graphics processing unit (GPU) 10, a GPU cache 12, a
display interface 14, a display 16 and a bus 18. User interface
4, CPU 6, memory subsystem 8, GPU 10 and display inter-
face 14 may communicate with each other using bus 18. It
should be noted that the specific configuration of buses and
communication interfaces between the different components
shown in FIG. 1 is merely exemplary, and other configura-
tions of computing devices and/or other graphics processing
systems with the same or different components may be used
to implement the techniques of this disclosure.

CPU 6 may comprise a general-purpose or a special-pur-
pose processor that controls operation of computing device 2.
A user may provide input to computing device 2 to cause CPU
6 to execute one or more software applications. The software
applications that execute on CPU 6 may include, for example,
an operating system, a word processor application, an email
application, a spread sheet application, a media player appli-
cation, a video game application, a graphical user interface
application or another program. The user may provide input
to computing device 2 via one or more input devices (not
shown) such as a keyboard, a mouse, a microphone, a touch
pad or another input device that is coupled to computing
device 2 via user interface 4.

The software applications that execute on CPU 6 may
include one or more graphics rendering instructions that
instruct GPU 10 to cause the rendering of graphics data to
display 16. In some examples, the software instructions may
conform to a graphics application programming interface
(API), such as, e.g., an Open Graphics Library (OpenGL®)
API, an Open Graphics Library Embedded Systems
(OpenGL ES) API, a Direct3D API, a DirectX API, a Ren-
derMan API, a WebGL API, or any other public or proprietary
standard graphics API. In order to process the graphics ren-
dering instructions, CPU 6 may issue one or more graphics
rendering commands to GPU 10 to cause GPU 10 to perform
some or all of the rendering of the graphics data. In some
examples, the graphics data to be rendered may include a list
of graphics primitives, e.g., points, lines, triangles, quadralat-
erals, triangle strips, patches, etc.

Memory subsystem 8 may be configured to service
memory access requests received from other components
within computing device 2. For example, memory subsystem
8 may service memory access requests from CPU 6, GPU 10,
and/or display interface 14. The memory access requests may
include read access requests and write access requests.
Memory subsystem 8 is communicatively coupled to CPU 6,
GPU 10, user interface 4, and display interface 14 via bus 18.

Memory subsystem 8 includes a memory controller 20 and
a memory 22. Memory controller 20 facilitates the transfer of
data going into and out of memory 22. For example, memory
controller 20 may receive memory read requests and memory
write requests from CPU 6 and/or GPU 10, and service such

25

40

45

10

requests with respect to memory 22 in order to provide
memory services for the components in computing device 2.

A read request may specify a memory address or a range of
memory addresses from which data should be returned to the
requester. A write request may specify a memory address or a
range of memory addresses to which specified data should be
written. The data to be written may be supplied to memory
controller 20 by the requester (e.g., CPU 6 and/or GPU 10)
via one or more data busses in conjunction with the write
request. In some examples, the data to be written may form a
part of the write request. In response to receiving memory
access requests, memory controller 20 may issue one or more
read commands to memory 22 and/or one or more write
commands to memory 22 to service the read and write
requests.

Memory controller 20 is communicatively coupled to
memory 22 via a dedicated memory bus, and to other com-
ponents (e.g., CPU 6 and GPU 10) via bus 18. Although
memory controller 20 is illustrated in the example computing
device 2 of FIG. 1 as being a processing module that is
separate from both CPU 6 and memory 22, in other examples,
some or all of the functionality of memory controller 20 may
be implemented in one or more of CPU 6, GPU 10, and
memory 22.

Memory 22 may store program modules and/or instruc-
tions that are accessible for execution by CPU 6 and/or data
for use by the programs executing on CPU 6. For example,
memory 22 may store user applications and graphics data
associated with the applications. Memory 22 may also store
information for use by and/or generated by other components
of computing device 2. For example, memory 22 may actas a
device memory for GPU 10 and may store data to be operated
on by GPU 10 as well as data resulting from operations
performed by GPU 10. For example, memory 22 may store
any combination of surfaces, source surfaces, destination sur-
faces, texture buffers, depth bufters, stencil buffers, vertex
buffers, frame buffers, or the like. In addition, memory 22
may store command streams for processing by GPU 10.
Memory 22 may include one or more volatile or non-volatile
memories or storage devices, such as, for example, random
access memory (RAM), static RAM (SRAM), dynamic RAM
(DRAM), synchronous dynamic random access memory
(SDRAM), read-only memory (ROM), erasable program-
mable ROM (EPROM), electrically erasable programmable
ROM (EEPROM), Flash memory, a magnetic data media or
an optical storage media. In some examples, memory 22 may
be a double data rate (DDR) SDRAM, such as, e.g., a DDR1
SDRAM, a DDR2 SDRAM, a DDR3 SDRAM, a DDR4
SDRAM, etc.

GPU 10 may be configured to execute commands that are
issued to GPU 10 by CPU 6. The commands executed by
GPU 10 may include graphics commands, draw call com-
mands, GPU state programming commands, memory trans-
fer commands, general-purpose computing commands, ker-
nel execution commands, etc. The memory transfer
commands may include, e.g., memory copy commands,
memory compositing commands, and blitting commands.

In some examples, GPU 10 may be configured to perform
graphics operations to render one or more graphics primitives
to display 16. In such examples, when one of the software
applications executing on CPU 6 requires graphics process-
ing, CPU 6 may provide graphics data to GPU 10 for render-
ing to display 16 and issue one or more graphics commands to
GPU 10. The graphics commands may include, e.g., draw call
commands, GPU state programming commands, memory
transfer commands, blitting commands, etc. The graphics
data may include vertex buffers, texture data, surface data,

US 9,245,496 B2

11

etc. In some examples, CPU 6 may provide the commands
and graphics data to GPU 10 by writing the commands and
graphics data to memory 22, which may be accessed by GPU
10.

In further examples, GPU 10 may be configured to perform
general-purpose computing for applications executing on
CPU 6. In such examples, when one of the software applica-
tions executing on CPU 6 decides to off-load a computational
task to GPU 10, CPU 6 may provide general-purpose com-
puting data to GPU 10, and issue one or more general-purpose
computing commands to GPU 10. The general-purpose com-
puting commands may include, e.g., kernel execution com-
mands, memory transfer commands, etc. In some examples,
CPU 6 may provide the commands and general-purpose com-
puting data to GPU 10 by writing the commands and graphics
data to memory 22, which may be accessed by GPU 10.

GPU 10 may, in some instances, be built with a highly-
parallel structure that provides more efficient processing of
vector operations than CPU 6. For example, GPU 10 may
include a plurality of processing elements that are configured
to operate on multiple vertices, control points, pixels and/or
other data in a parallel manner. The highly parallel nature of
GPU 10 may, in some instances, allow GPU 10 to render
graphics images (e.g., GUIs and two-dimensional (2D) and/
or three-dimensional (3D) graphics scenes) onto display 16
more quickly than rendering the images using CPU 6. In
addition, the highly parallel nature of GPU 10 may allow
GPU 10 to process certain types of vector and matrix opera-
tions for general-purposed computing applications more
quickly than CPU 6.

GPU 10 may, in some examples, be integrated into a moth-
erboard of computing device 2. In other instances, GPU 10
may be present on a graphics card that is installed in a port in
the motherboard of computing device 2 or may be otherwise
incorporated within a peripheral device configured to inter-
operate with computing device 2. In further instances, GPU
10 may be located on the same microchip as CPU 6 forming
a system on a chip (SoC). GPU 10 may include one or more
processors, such as one or more microprocessors, application
specific integrated circuits (ASICs), field programmable gate
arrays (FPGAs), digital signal processors (DSPs), or other
equivalent integrated or discrete logic circuitry.

In some examples, GPU 10 may be directly coupled to
GPU cache 12. Thus, GPU 10 may read data from and write
data to GPU cache 12 without necessarily using bus 18. In
other words, GPU 10 may process data locally using a local
storage, instead of off-chip memory. This allows GPU 10 to
operate in a more efficient manner by eliminating the need of
GPU 10 to read and write data via bus 18, which may expe-
rience heavy bus traffic. In some instances, however, GPU 10
may not include a separate cache, but instead utilize memory
22 viabus 18. GPU cache 12 may include one or more volatile
or non-volatile memories or storage devices, such as, e.g.,
random access memory (RAM), static RAM (SRAM),
dynamic RAM (DRAM), erasable programmable ROM
(EPROM), electrically erasable programmable ROM (EE-
PROM), Flash memory, a magnetic data media or an optical
storage media.

CPU 6 and/or GPU 10 may store rendered image data in a
frame buffer that is allocated within memory 22. Display
interface 14 may retrieve the data from the frame buffer and
configure display 16 to display the image represented by the
rendered image data. In some examples, display interface 14
may include a digital-to-analog converter (DAC) that is con-
figured to convert the digital values retrieved from the frame
buffer into an analog signal consumable by display 16. In
other examples, display interface 14 may pass the digital

20

30

40

45

50

55

12

values directly to display 16 for processing. Display 16 may
include a monitor, a television, a projection device, a liquid
crystal display (LCD), a plasma display panel, a light emit-
ting diode (LED) array, a cathode ray tube (CRT) display,
electronic paper, a surface-conduction electron-emitted dis-
play (SED), a laser television display, a nanocrystal display or
another type of display unit. Display 16 may be integrated
within computing device 2. For instance, display 16 may be a
screen of a mobile telephone handset or a tablet computer.
Alternatively, display 16 may be a stand-alone device coupled
to computer device 2 via a wired or wireless communications
link. For instance, display 16 may be a computer monitor or
flat panel display connected to a personal computer via a
cable or wireless link.

Bus 18 may be implemented using any combination of bus
structures and bus protocols including first, second and third
generation bus structures and protocols, shared bus structures
and protocols, point-to-point bus structures and protocols,
unidirectional bus structures and protocols, and bidirectional
bus structures and protocols. Examples of different bus struc-
tures and protocols that may be used to implement bus 18
include, e.g., a HyperTransport bus, an InfiniBand bus, an
Advanced Graphics Port bus, a Peripheral Component Inter-
connect (PCI) bus, a PCI Express bus, an Advanced Micro-
controller Bus Architecture (AMBA) Advanced High-perfor-
mance Bus (AHB), an AMBA Advanced Peripheral Bus
(APB), and an AMBA Advanced eXentisible Interface (AXI)
bus. Other types of bus structures and protocols may also be
used.

According to this disclosure, one or both of CPU 6 and
GPU 10 may be configured to select a memory transfer mode
for performing at least part of a memory transfer operation,
and GPU 10 may be configured to perform the memory trans-
fer operation based on the selected memory transfer mode.
The memory transfer mode may be selected from a set of at
least two different memory transfer modes. In some
examples, the set of at least two different memory transfer
modes may include an interleave memory transfer mode and
a sequential memory transfer mode.

In some examples, the memory transfer mode may indicate
how the issuance of read requests and the issuance of write
requests are to be synchronized during the performance of a
memory transfer operation. In such examples, the techniques
of this disclosure may allow GPU 10 to selectively switch
between at least two different modes of synchronization for
the issuance of read requests and write requests. For example,
if the interleave memory transfer mode is selected as the
memory transfer mode to use for performing all or part of a
memory transfer operation, then GPU 10 may cause read
requests and write requests to be issued based on a producer-
consumer synchronization paradigm. For instance, a write
engine may consume source data in response to GPU 10
receiving the source data (e.g., in response to source data
being produced), and a read engine may issue read requests in
response to source data being consumed by the write engine.
On the other hand, if the sequential memory transfer mode is
selected as the memory transfer mode to use for performing
all or part of a memory transfer operation, then GPU 10 may
cause read requests and write requests to be issued based on a
mutual exclusion synchronization paradigm. For example,
GPU 10 may alternate between enabling a read engine to
issue multiple, consecutive read requests and enabling a write
engine to issue multiple, consecutive write requests during
separate time intervals.

In further examples, the memory transfer mode may indi-
cate a level of granularity at which read requests and write
requests are to be interleaved during the performance of a

US 9,245,496 B2

13

memory transfer operation. In such examples, the techniques
of this disclosure may allow GPU 10 to selectively switch
between at least two different granularities of interleaving
read requests and write requests for the performance of
memory transfer operations. For example, if the interleave
memory transfer mode is selected as the memory transfer
mode to use for performing all or part of a memory transfer
operation, then GPU 10 may cause read requests and write
requests to be interleaved with a relatively fine level of granu-
larity. For instance, single read requests and single write
requests may be interleaved with each other. On the other
hand, if the sequential memory transfer mode is selected as
the memory transfer mode to use for performing all or part of
a memory transfer operation, then GPU 10 may cause read
requests and write requests to be interleaved with a relatively
course level of granularity. For example, GPU 10 may alter-
nate between issuing groups of multiple, consecutive read
requests and groups of multiple, consecutive write requests.

In additional examples, the memory transfer mode may
indicate whether read requests and write requests are required
to be issued by GPU 10 in groups of multiple, consecutive
read requests and groups of multiple, consecutive write
requests. In such examples, the techniques of this disclosure
may allow GPU 10 to selectively switch between: (1) requir-
ing read requests and write requests to be issued in groups of
multiple, consecutive read requests and groups of multiple,
consecutive write requests; and (2) not requiring read
requests and write requests to be issued in groups of multiple,
consecutive read requests and groups of multiple, consecutive
write requests.

For example, if the interleave memory transfer mode is
selected as the memory transfer mode to use for performing
all or part of a memory transfer operation, then GPU 10 may
not require read requests and write requests to be issued in
groups of multiple, consecutive read requests and groups of
multiple, consecutive write requests. For example, GPU 10
may allow a read engine and a write engine to independently
issue individual memory requests based on a producer-con-
sumer paradigm. On the other hand, if the sequential memory
transfer mode is selected as the memory transfer mode to use
for performing all or part of a memory transfer operation, then
GPU 10 may require that read requests and write requests be
issued in groups of multiple, consecutive read requests and
groups of multiple, consecutive write requests. For example,
GPU 10 may alternate between granting exclusive memory
access to a read engine in order to issue multiple, consecutive
read requests to memory 22, and granting exclusive memory
access to a write engine in order to issue multiple, consecutive
write requests to memory 22.

In some examples, GPU 10 and/or CPU 6 (e.g., a GPU
driver executing on CPU 6) may select a memory transfer
mode for performing all or part of a memory transfer opera-
tion based on a size of the memory transfer operation. The
size of the memory transfer operation may refer to the amount
of data to be transferred by the memory transfer operation.
For example, if the size of the memory transtfer operation is
greater than a threshold, then GPU 10 and/or CPU 6 may
select the sequential memory transfer mode as the memory
transfer mode to be used for performing all or part of the
memory transfer operation. On the other hand, if the size of
the memory transfer operation is not greater than a threshold,
then GPU 10 and/or CPU 6 may select the interleave memory
transfer mode as the memory transfer mode to be used for
performing all or part of the memory transfer operation.

In additional examples, GPU 10 and/or CPU 6 (e.g.,a GPU
driver executing on CPU 6) may select a memory transfer
mode for performing all or part of a memory transfer opera-

30

40

45

50

14

tion based on an amount of overlap a destination region
defined for the memory transfer operation has with a fixed,
screen-aligned buffer region. In some cases, a surface may
correspond to the pixels contained on a display monitor or
screen. The screen may be subdivided into a plurality of
regions each having a fixed size that corresponds to the size of
the buffer that is used to store the read data. These subdivided
regions may be referred to as fixed, screen-aligned buffer
regions. In such examples, when operating in the sequential
memory transfer mode, GPU 10 may be configured to transfer
data between memory 22 and GPU 10 in data units of a fixed
size that correspond to the size of the fixed, screen-aligned
buffer regions.

If a destination region partially, but not fully, covers a
particular fixed, screen-aligned bufter region, then GPU 10
and/or CPU 6 may select the interleave memory transfer
mode as the memory transfer mode for that region of the
screen because the buffer in which the read data will be stored
will be not be fully utilized. If the sequential memory mode
were selected in such a case, the fixed size memory read
would cause extraneous data to be read from the memory,
which may outweigh any read-write turnaround savings
which would occur by using the sequential memory transfer
mode. On the other hand, if a destination region fully covers
a particular fixed, screen-aligned buffer region, then GPU 10
and/or CPU 6 may select the sequential memory transfer
mode as the memory transfer mode for that region of the
screen because the buffer in which the read data will be stored
will be fully utilized and no time would be wasted retrieving
extraneous data.

In further examples, GPU 10 and/or CPU 6 (e.g., a GPU
driver executing on CPU 6) may select a memory transfer
mode for performing a memory transfer operation based on a
size and/or a complexity of a shader program that is used to
perform the memory transfer operation (e.g., a compositing
operation). The size and/or the complexity of the shader pro-
gram may be indicative of whether the performance of the
shader operations for a particular memory transfer operation
is likely to be a performance bottleneck for the memory
transfer operation.

In such examples, if the size and/or complexity of the
shader program is less than a threshold, then GPU 10 and/or
CPU 6 may determine that the performance of the shader
operations is not likely to be a performance bottleneck for the
memory transfer operation. In such a case, GPU 10 and/or
CPU 6 may select the sequential memory transfer mode for
the memory transfer operation because it is possible that
memory access efficiency may be a performance bottleneck
for the memory transfer operation. On the other hand, if the
size and/or complexity of the shader program is greater than
a threshold, then GPU 10 and/or CPU 6 may determine that
the performance of the shader operations is likely to be a
performance bottleneck for the memory transfer operation. In
such a case, GPU 10 and/or CPU 6 may select the interleave
memory transfer mode for the memory transfer operation
because an increase in memory efficiency is not needed and
because the deferral of read operations that occurs in the
sequential memory transfer mode could have the potential to
starve the shader program of data, which is typically not
desirable if the shader program is a performance bottleneck.

In additional examples, GPU 10 and/or CPU 6 (e.g.,a GPU
driver executing on CPU 6) may select a memory transfer
mode based on a determination of whether execution of the
shader program is likely to be a performance bottleneck for
the memory transfer operation. For example, GPU 10 and/or
CPU 6 may select the sequential memory transfer mode as the
memory transfer mode in response to determining that the

US 9,245,496 B2

15

execution of the shader program is not likely to be a perfor-
mance bottleneck for the memory transfer operation. On the
other hand, GPU 10 and/or CPU 6 selecting the interleave
memory transfer mode as the memory transter mode in
response to determining that the execution of the shader pro-
gram is likely to be a performance bottleneck for the memory
transfer operation.

In additional examples, GPU 10 may select and configure
a cache line size for a cache based on the selected memory
transfer mode. The cache may correspond to the buffer in the
GPU in which the read data is stored. In such examples, if the
memory transfer mode is the sequential memory transfer
mode, then GPU 10 may select a cache line size that is equal
to the entire capacity of the cache in order to allow as large of
a grouping of read and write operations as possible. On the
other hand, if the memory transfer mode is the interleave
memory transfer mode, then GPU 10 may select a cache line
size that is less than the entire capacity of the cache in order to
allow multiple regions of data to be simultaneously cached
when servicing the interleaved requests.

In some examples, one or more other components within
computing device 2 (e.g., CPU 6) may signal a memory
transfer mode to be used by GPU 10 for performing a memory
transfer operation. The signaling techniques may allow a
GPU driver and/or a user application executing on the appli-
cation processor to control the memory transfer mode that is
used for performing a memory transfer operation.

Different memory transfer modes may be more efficient
than others for different types of memory transfer operations.
For example, the sequential memory transfer mode may gen-
erally be more efficient than the interleave memory transfer
mode for larger memory transfer operations, while the inter-
leave memory transfer mode may generally be more efficient
than the sequential memory transfer mode for smaller
memory transfer operations, particularly in the case where the
minimum amount of data that is accessed per read request
during the sequential memory transfer mode is large. The
techniques of this disclosure may be used to selectively use
different memory transfer modes that are more suited for
particular types of memory transfer operations, thereby
improving the performance of memory transfer operations by
a GPU.

FIG. 2 is a block diagram illustrating CPU 6, GPU 10 and
memory subsystem 8 of computing device 2 in FIG. 1 in
further detail. As shown in FIG. 2, CPU 6 is communicatively
coupled to GPU 10 and memory subsystem 8, and GPU 10 is
communicatively coupled to CPU 6 and memory subsystem
8. GPU 10 may, in some examples, be integrated onto a
motherboard with CPU 6. In additional examples, GPU 10
may be implemented on a graphics card that is installed in a
port of a motherboard that includes CPU 6. In further
examples, GPU 10 may be incorporated within a peripheral
device that is configured to interoperate with CPU 6. In addi-
tional examples, GPU 10 may be located on the same micro-
chip as CPU 6 forming a system on a chip (SoC).

CPU 6 may be configured to execute a software application
24, a graphics API 26, a GPU driver 28 and an operating
system 30. Software application 24 may include one or more
instructions that cause graphics images to be displayed and/or
one or more instructions that cause a non-graphics task (e.g.,
a general-purposed computing task) to be performed on GPU
10. Software application 24 may issue instructions to graph-
ics API 26. Graphics API 26 may be a runtime service that
translates the instructions received from software application
24 into a format that is consumable by GPU driver 28.

GPU driver 28 receives the instructions from software
application 24, via graphics API 26, and controls the opera-

20

40

45

55

16

tion of GPU 10 to service the instructions. For example, GPU
driver 28 may formulate one or more commands, place the
commands into memory 22, and instruct GPU 10 to execute
the commands. In some examples, GPU driver 28 may place
the commands into memory 22 and communicate with GPU
10 via operating system 30, e.g., via one or more system calls.

In some examples, GPU driver 28 (or another software
component on CPU 6) may be configured to select a memory
transfer mode to be used for performing all or part of the
memory transfer operation, and cause GPU 10 to perform the
memory transfer operation based on the selected memory
transfer mode. In some examples, the memory transfer mode
may be selected from a set of at least two memory transfer
modes that includes an interleave memory transfer mode and
a sequential memory transfer mode.

In additional examples, GPU driver 28 may be configured
to select the memory transfer mode to be used for all or part of
a memory transfer operation according to any of the tech-
niques described in this disclosure. For example, GPU driver
28 may select the memory transfer mode based on the size of
the memory transfer operation (e.g., an amount of data to be
transferred by the memory transfer operation). As another
example, GPU driver 28 may select the memory transfer
mode based on an amount of overlap a destination region
defined for the memory transfer operation has with a fixed,
screen-aligned buffer region. As a further example, GPU
driver 28 may select the memory transfer mode based on a
determination of whether execution of the shader program is
likely to be a performance bottleneck for the memory transfer
operation. In an additional example, GPU 10 may use one or
more shader programs to perform the memory transfer opera-
tion, and GPU driver 28 may select the memory transfer mode
based on a size of the shader program that is used for per-
forming the memory transfer operation and/or a complexity
of'the shader program that is used for performing the memory
transfer operation.

GPU 10 includes a command engine 32, a raster operations
unit 34, a buffer 36, aread engine 38 and a write engine 40. In
some examples, GPU 10 may include a 3D graphics render-
ing pipeline (not shown). In such examples, raster operations
unit 34 may form a part of the 3D graphics rendering pipeline.

In some examples, GPU 10 may include a plurality of
processing units (not shown), each of which may be a pro-
grammable processing unit or a fixed-function processing
unit. In cases where GPU 10 includes a 3D graphics rendering
pipeline, the plurality of processing units may operate
together to implement the 3D graphics rendering pipeline. In
some examples, the 3D graphics rendering pipeline may con-
formto a 3D graphics pipeline that is specified by one or more
public and/or proprietary 3D graphics standard APIs, such as,
e.g., an Open Graphics Library (OpenGL®) API, an Open
Graphics Library Embedded Systems (OpenGL ES) API, a
Direct3D API, a DirectX API, etc.

A programmable processing unit may include, for
example, a programmable shader unit that is configured to
execute one or more shader programs that are downloaded
onto GPU 10 by CPU 6. A shader program, in some examples,
may be a compiled version of a program written in a high-
level shading language, such as, e.g., an OpenGL Shading
Language (GLSL), a High Level Shading Language (HLSL),
a C for Graphics (Cg) shading language, etc. In some
examples, a programmable shader unit may include a plural-
ity of processing units that are configured to operate in par-
allel, e.g., an SIMD pipeline. A programmable shader unit
may have a program memory that stores shader program
instructions and an execution state register, e.g., a program
counter register that indicates the current instruction in the

US 9,245,496 B2

17

program memory being executed or the next instruction to be
fetched. The programmable shader units may include, for
example, vertex shader units, pixel shader units, geometry
shader units, hull shader units, domain shader units, compute
shader units, etc.

A fixed-function processing unit may include hardware
that is hard-wired to perform certain functions. Although the
fixed function hardware may be configurable, via one or more
control signals for example, to perform different functions,
the fixed function hardware typically does not include a pro-
gram memory that is capable of receiving user-compiled pro-
grams. The fixed function processing units included in GPU
10 may include, for example, processing units that perform,
e.g., raster operations, depth testing, scissors testing, alpha
blending, etc. In examples where raster operations unit 34 is
included in a 3D rendering pipeline, raster operations unit 34
may be, in some examples, a configurable, fixed-function
processing unit. In some examples, raster operations unit 34
may be implemented as an output merger processing unit of a
3D rendering pipeline.

Command engine 32 is configured to receive commands
from CPU 6 and to cause GPU 10 to execute the commands.
In some examples, CPU 6 may place the commands in
memory 22, and command engine 32 may retrieve the com-
mands from memory 22. The commands may include, for
example, state commands that change the state (e.g., render-
ing state) of GPU 10, shader program binding commands that
instruct GPU 10 to load particular shader programs into one
or more of the programmable processing units in a 3D ren-
dering pipeline, drawing commands that instruct GPU 10 to
render particular data stored in memory 22, general-purpose
computing commands that instruct GPU 10 to execute one or
more general-purpose computing kernels with respect to par-
ticular data stored in memory 22, and memory transfer com-
mands that instruct GPU 10 to perform one or more memory
transfer operations.

In response to receiving a state command, command
engine 32 may be configured to set one or more state registers
in GPU 10 to particular values based on the state command,
and/or to configure one or more of the fixed-function process-
ing units in a 3D rendering pipeline (not shown) for GPU 10
based on the state command. In response to receiving a draw
call command, command engine 32 may be configured to
cause the 3D rendering pipeline (not shown) in GPU 10 to
retrieve 3D geometry from memory 22, and render the 3D
geometry data into a 2D graphics image. In response to
receiving a shader program binding command, command
engine 32 may load one or more particular shader programs
into one or more of the programmable processing units in the
3D rendering pipeline.

In some examples, in response to receiving a memory
transfer command that instructions GPU 10 to perform a
memory transfer operation, command engine 32 may select a
memory transfer mode to be used for performing all or part of
the memory transfer operation, and cause GPU 10 to perform
the memory transfer operation based on the selected memory
transfer mode. In some examples, the memory transfer mode
may be selected from a set of at least two memory transfer
modes that includes an interleave memory transfer mode and
a sequential memory transfer mode.

In additional examples, command engine 32 may be con-
figured to select the memory transfer mode to be used for all
or part of a memory transfer operation according to any of the
techniques described in this disclosure. For example, com-
mand engine 32 may select the memory transfer mode based
on the size of the memory transfer operation (e.g., an amount
of data to be transferred by the memory transfer operation).

10

15

20

25

30

35

40

45

50

55

60

65

18

As another example, command engine 32 may select the
memory transfer mode based on an amount of overlap a
destination region defined for the memory transfer operation
has with a fixed, screen-aligned buffer region. As a further
example, command engine 32 may select the memory trans-
fer mode based on a determination of whether execution of
the shader program is likely to be a performance bottleneck
for the memory transfer operation. In an additional example,
GPU 10 may use one or more shader programs to perform the
memory transfer operation, and command engine 32 may
select the memory transfer mode based on a size of the shader
program that is used for performing the memory transfer
operation and/or a complexity of the shader program that is
used for performing the memory transfer operation.

In further examples, command engine 32 may select the
memory transter mode based on one or more commands
received from CPU 6 that instruct command engine 32 to use
aparticular memory transfer mode. In some cases, the one or
more commands may include state commands that instruct
GPU 10 to set the state of a memory transfer mode state
variable in GPU 10. In such cases, command engine 32 may
select the memory transfer mode based on a current state of
the memory transfer mode state variable. The memory trans-
fer mode state variable may be stored, for example, in a
register in GPU 10. In additional cases, the one or more
commands may be commands that instruct GPU 10 to per-
form a memory transfer operation or some other operation,
and the command may include a flag or other information
indicative of a memory transfer operation to use when per-
forming the memory transfer operation or other operation.

In order to perform a memory transfer operation based on
aselected memory transfer operation mode, command engine
32 may configure one or more components in GPU 10 that are
used for performing the memory transfer operation based on
the selected memory transfer mode. For example, command
engine 32 may configure one or more of buffer 36, read
engine 38 and write engine 40 based on the selected memory
transfer mode as described in further detail below.

Raster operations unit 34 is configured to perform one or
more raster operations based on source data to generate des-
tination data. The source data may correspond to one or more
source regions of a memory transfer operation. In some
examples, raster operations unit 34 may receive the source
data from buffer 36 and/or from write engine 40. The desti-
nation data may be written to a destination region of a
memory transter operation.

The type of raster operation performed by raster operations
unit 34 may be configurable, e.g. by command engine 32. The
raster operation types may specify how the destination data is
to be generated based on the source data for a particular
memory transfer operation. In cases where raster operations
unit 34 combines two different source regions to generate
destination data (e.g., a compositing operation), the rasteriza-
tion operation type may specify how the two different source
regions are to be combined to generate the destination data. In
some examples, the raster operation types may be bitwise
operations that specify how destination data for a particular
pixel location in a destination region is to be generated based
on corresponding pixel locations in the source regions. The
corresponding pixel locations in the source regions may be
pixel locations that are in the same relative location of their
respective source regions as the pixel location is in the desti-
nation region. The bitwise operations may include, for
example, Boolean operations, such as bitwise AND, OR,
NOT and/or XOR operations. The bitwise operations may
also include bit copy operations, bit inverting operations,
solid fill operations, etc. The raster operation may be an

US 9,245,496 B2

19

operation that specifies how the bits are to be combined for a
particular compositing operation. In some examples, the ras-
ter operations may include bitwise operations, such as, e.g.,
Boolean logic operations. The Boolean logic operations may
include, e.g., bitwise AND, OR, NOT and/or XOR opera-
tions.

In additional examples, the raster operation types may
include blending operations (e.g., alpha blending operations).
In some examples, a blending operation may specify a source
pixel multiplier and a destination pixel multiplier to be used
during execution of the blending operation. In such examples,
during execution of the blending operation, a source pixel
value (e.g., a source pixel color and/or a source alpha value)
may be multiplied by the source pixel multiplier to produce a
first product, a corresponding destination pixel value (e.g., a
destination pixel color and/or a destination alpha value) may
be multiplied by the destination pixel multiplier to produce a
second product, and the sum of the two products may be
added together to produce a destination value for the pixel
location. Other types of blending operations are also possible.

In some examples, command engine 32 may configure
raster operations unit 34 based on data included in a memory
transfer operation command received by GPU 10 from CPU
6. For example, command engine 32 may select a type of
raster operation to be performed by raster operations unit 34
based on a type of raster operation that is specified in the
memory transfer operation command, and configure raster
operations unit 34 to perform the memory transfer operation
using the selected type of rasterization operation.

Although raster operations unit 34 has been described
herein as combining different source regions to produce des-
tination data for a memory transfer operation, in other
examples, one or more other components in GPU 10 may be
used in addition to or lieu of raster operations unit 34 to
perform the memory transfer operation. For example, a
shader program executing on a shader unit (not shown) of
GPU 10 may combine the different source regions according
to a combination technique that is specified in the shader
program to generate destination data for a memory transfer
operation.

Buffer 36 is configured to store source data that is retrieved
from memory 22 during the execution of a memory transfer
operation. In some examples, buffer 36 may be implemented
as a plurality of registers within GPU 10. Buffer 36 may
utilize any of a variety of buffering schemes including, for
example, a first-in-first-out (FIFO) buffering scheme.
According to the FIFO buffering scheme, source data that is
stored in buffer 36 is consumed by a consumer (e.g., write
engine 40) in the order in which the source data was placed
into buffer 36.

In some examples, buffer 36 may generate a signal indica-
tive of whether buffer 36 is full and a signal indicative of
whether buffer 36 is empty. In such examples, these signals
may be used to synchronize read engine 38 and/or write
engine 40 during the performance of a memory transfer
operation. In additional examples, buffer 36 may generate
signals indicative of whether the source data currently stored
in buffer 36 is greater than or equal to one or more thresholds
or less than or equal to one or more thresholds, and these
signals may be used in addition to or in lieu of full and empty
signals to synchronize read engine 38 and/or write engine 40
during the performance of a memory transfer operation.

In some examples, buffer 36 may be a cache that operates
according to a hit/miss caching paradigm with respect to
underlying memory 22. In such examples, buffer 36 may be,
in some examples, a configurable cache in the sense that the
cache line size may be configurable. A cache line may refer to

25

35

40

45

50

20

the data unit that is transferred between the underlying
memory (e.g., memory 22) and the cache (e.g., buffer 36) in
response to a cache miss and/or in response to a cache write-
back. The size of the cache line may refer to the size of the
data unit that is transferred between the underlying memory
and the cache. When a cache line is transferred from the
underlying memory into the cache, the cache line may be
placed into and correspond to a cache entry. Therefore, the
size of the cache line may also refer to the size of a single
cache entry in the cache.

In examples where buffer 36 is a configurable cache, com-
mand engine 32 may select and configure the cache line size
of bufter 36 based on a selected memory transfer mode. For
example, command engine 32 may select a cache line size for
buffer 36 based on a selected memory transfer mode, and
configure buffer 36 to operate according to the selected cache
line size.

In some examples, command engine 32 may select a cache
line size for buffer 36 that is equal to an entire capacity of
buffer 36 in response to the sequential memory transfer mode
being selected as the memory transfer mode for performing
the memory transfer operation. This may, in some cases,
allow groupings of consecutive read operations and group-
ings of consecutive write operations to be as large as possible
during the sequential memory transfer mode. In such
examples, buffer 36 may select a cache line size for buffer 36
that is less than the entire capacity of the cache in response to
the interleave memory transfer mode being selected as the
memory transfer mode for performing the memory transfer
operation. This may allow multiple regions of data in the
underlying memory to be simultaneously cached when ser-
vicing the interleaved requests, which may, in some cases,
reduce the cache-miss rate and improve efficiency for the
interleave mode.

Read engine 38 is configured to issue read requests to
memory subsystem 8 and to place source data received in
response to the read requests into buffer 36. Read engine 38
may be configured to operate in accordance with one of a
plurality of synchronization modes. The synchronization
modes used to control the operation of read engine 38 may
define the manner in which the issuance of read requests are
synchronized with the issuance of write requests by write
engine 40 and/or the manner in which the issuance of read
requests are synchronized with the status of buffer 36. The
synchronization modes used by read engine 38 may include
an interleave synchronization mode that corresponds to the
interleave memory transfer operation and a sequential syn-
chronization mode that corresponds to the sequential memory
transfer operation.

In some examples, command engine 32 may configure the
synchronization mode to be used by read engine 38 for the
performance of all or part of a memory transfer operation
based on a selected memory transfer mode. For example,
command engine 32 may select a synchronization mode
based on a selected memory transfer mode, and configure
read engine 38 to operate in accordance with the selected
synchronization mode. As another example, command
engine 32 may select the interleave synchronization mode to
be used by read engine 38 in response to the interleave
memory transfer mode being selected as the memory transfer
mode for performing a memory transfer operation, and select
the sequential synchronization mode to be used by read
engine 38 in response to the sequential memory transfer mode
being selected as the memory transfer mode for performing a
memory transter operation.

When operating according to the interleave synchroniza-
tion mode, read engine 38 may issue an initial number of read

US 9,245,496 B2

21

requests in response to the initiation of a memory transfer
operation. After the initial number of read requests have been
issued, read engine 38 may issue an additional read request in
response to source data being consumed by buffer 36 that is
sufficient to issue a write request for the memory transfer
operation. Read engine 38 may continue to issue read
requests in this manner until all read requests have been
issued for the memory transfer operation. In response to
receiving a source data unit in response to a particular read
request, read engine 38 may place the source data unit into
buffer 36 and/or pass the source data unit directly write
engine 40 and/or raster operations unit 34 for further process-
ing.

Data that is sufficient to issue a write request for the
memory transfer operation may refer to data that corresponds
to all of the source operands that are required to calculate the
destination data for a single location in destination region. For
example, for a memory copy operation, data that is sufficient
to issue a write request for the memory transfer operation may
refer to data that corresponds to a single location in the source
region of the memory copy operation. As another example,
for a compositing operation, data that is sufficient to issue a
write request for the memory transfer operation may refer to
data that corresponds to a single location in a first source
region for the memory copy operation and data that corre-
sponds to a single corresponding location in a second source
region for the memory copy operation. Corresponding loca-
tions may refer to locations that have the same relative posi-
tion in different regions. For example, the third column of the
second row in two different regions have the same relative
location even if the regions are located in different portions of
their respective surfaces.

When operating according to the sequential synchroniza-
tion mode, read engine 38 may commence the issuance of
read requests in response to the initiation of a memory trans-
fer operation. Read engine 38 may continue issuing read
requests until the number of issued read requests is greater
than or equal to a first threshold. Once the number of issued
read requests is greater than or equal to the first threshold,
read engine 38 may cease issuing read requests until an
amount of unconsumed source data stored in buffer 36 (e.g.,
data that has not been consumed by write engine 40) is less
than or equal to a second threshold. Once an amount of
unconsumed source data stored in buffer 36 is less than or
equal to the second threshold, read engine 38 may resume the
issuance of read requests. Read engine 38 may continue to
cease and resume issuing read requests in this manner until all
read requests have been issued for the memory transfer opera-
tion. The first threshold may be greater than the second
threshold.

In some examples, the first threshold may be based on the
size of buffer 36. For example, the first threshold may, in some
examples, be equal to the maximum number of read data units
that buffer 36 is capable of storing at one time where a read
data unit corresponds to the source data returned in response
to a single read request. In such examples, read engine 38 may
issue “just enough” read requests to fill up buffer 36 with
source data that is returned in response to the requests. In
some examples, read engine 38 may keep track of how many
read requests have been issued for a given burst of read
requests to determine whether a threshold number of read
requests have been issued. In additional examples, read
engine 38 may monitor the amount of source data currently
stored in buffer 36 to determine whether a threshold number
of read requests have been issued. For example, read engine
38 may utilize a signal generated by buffer 36 that is indica-
tive of whether buffer 36 is full or a signal generated by buffer

10

15

20

25

30

35

40

45

50

55

60

65

22

36 that is indicative of whether the amount of data stored in
buffer 36 is greater than or equal to a threshold to determine
whether a threshold number of read requests have been
issued.

In further examples, the second threshold may be equal to
zero. That is, read engine 38 may cease issuing read requests
until there is no more unconsumed data in buffer 36. In other
words, read engine 38 may cease issuing read requests until
buffer 36 is empty. Once buffer 36 is empty, then read engine
38 may resume issuing read requests to fill up the buffer. In
some examples, read engine 38 may utilize a signal generated
by buffer 36 that is indicative of whether buffer 36 is empty or
a signal generated by buffer 36 that is indicative of whether
the amount of unconsumed source data in buffer 36 is less
than or equal to a threshold to determine whether the uncon-
sumed data is less than or equal to the second threshold.

The read requests issued by buffer 36 may specify a
memory address or a range of memory addresses within
memory 22 from which data should be returned to GPU 10.
The data returned by memory subsystem 8 in response to a
single read request may be referred to as a source data unit. In
some examples, each read request issued by read engine 38
may correspond to a respective one of a plurality of locations
in a source region for the memory transfer operation, and the
source data unit returned in response to the read request may
correspond to the data that is associated with the respective
one of the plurality of locations in the source region. In such
examples, for a memory copy operation with a single source
surface, read engine 38 may issue a single read request for
each location in the destination surface. For a compositing
operation with multiple source surfaces, read engine 38 may
issue multiple read requests for each of the locations in the
destination surface, e.g., one read request for the correspond-
ing location in each source surface.

Write engine 40 is configured to consume source data from
buffer 36, generate destination data based on the consumed
source data, and issue write requests to memory subsystem 8
in order to write destination data to a destination region in
memory 22. In some examples, write engine 40 may generate
the destination data such that the destination data is identical
to the source data. Such examples may be used to perform, for
example, memory copy operations. In further examples, write
engine 40 may combine source data from at least two differ-
ent source regions to generate the destination data. Such
examples may be used to perform, for example, compositing
operations. In such examples, write engine 40 may, in some
examples, use raster operations unit 34 to perform a raster
operation in order to combine the source data and generate the
destination data.

Write engine 40 may be configured to operate in accor-
dance with one of a plurality of synchronization modes. The
synchronization modes used to control the operation of write
engine 40 may define the manner in which the issuance of
write requests are synchronized with the issuance of read
requests by read engine 38 and/or the manner in which the
issuance of write requests are synchronized with the status of
buffer 36. The synchronization modes used by write engine
40 may include an interleave synchronization mode that cor-
responds to the interleave memory transfer operation and a
sequential synchronization mode that corresponds to the
sequential memory transfer operation.

In some examples, command engine 32 may configure the
synchronization mode to be used by write engine 40 for the
performance of all or part of a memory transfer operation
based on a selected memory transfer mode. For example,
command engine 32 may select a synchronization mode
based on a selected memory transfer mode, and configure

US 9,245,496 B2

23

write engine 40 to operate in accordance with the selected
synchronization mode. As another example, command
engine 32 may select the interleave synchronization mode to
be used by write engine 40 in response to the interleave
memory transfer mode being selected as the memory transfer
mode for performing a memory transfer operation, and select
the sequential synchronization mode to be used by write
engine 40 in response to the sequential memory transfer mode
being selected as the memory transfer mode for performing a
memory transter operation.

When operating according to the interleave synchroniza-
tion mode, in response to the initiation of a memory transfer
operation, write engine 40 may initially wait until source data
that is sufficient to issue a write request for a memory transfer
operation has been received by GPU 10 and/or placed into
buffer 36. Once source data has been received by GPU 10
and/or placed into buffer 36, write engine 40 may consume
the source data, generate destination data based on the source
data, and issue a write request to memory subsystem 8 to
write the destination data to memory 22. After the write
request has been issued, write engine 40 may determine if any
additional source data has been received by GPU 10 and/or
placed into buffer 36. If so, write engine 40 may consume the
source data and issue another write request for the additional
source data. Otherwise, write engine 40 may wait for addi-
tional data to be received by GPU 10 and/or to be placed into
buffer 36. Write engine 40 may continue to consume source
data in this manner until the memory transfer operation is
complete.

In some examples, consuming the source data may refer to
write engine 40 receiving the source data directly from read
engine 38 and processing the source data. In further
examples, consuming the source data may refer to write
engine 40 retrieving the source data from butfer 36 and pro-
cessing the source data. Processing the source data may
include generating destination data based on the source data.
After the data has been processed, write engine 40 may issue
a write request to write the destination data. Unconsumed
source data may refer to source data that has been placed into
buffer 36, but has not yet been consumed by write engine 40.
The amount of unconsumed source data may refer to the
number of unconsumed source data units that are currently
stored in bufter 36 where each source data unit corresponds to
source data that is returned in response to a single read
request. A source data unit may be alternatively referred to as
read data word.

When operating according to the sequential synchroniza-
tion mode, in response to the initiation of a memory transfer
operation, write engine 40 may initially wait until the amount
of unconsumed data in buffer 36 is greater than or equal to a
first threshold. During the waiting period, write engine 40
may not consume any source data or issue any write requests
for the memory transfer operation. Once the amount of
unconsumed data in buffer 36 is greater than or equal to the
first threshold, write engine 40 may commence the consump-
tion of source data and the issuance of write requests for the
consumed source data. Write engine 40 may continue issuing
write requests until the amount of unconsumed data in buffer
36 s less than or equal to a second threshold. Once the amount
of unconsumed data in buffer 36 is less than or equal to the
second threshold, write engine 40 may cease consuming
source data and issuing write requests for the consumed
source data until the amount of unconsumed data in buffer 36
is greater than or equal to the first threshold. After the amount
of'unconsumed data in buffer 36 is greater than or equal to the
first threshold, write engine 40 may again commence the
consumption of source data and the issuance of write

10

40

45

24

requests. Write engine 40 may continue to cease and resume
the consumption of source data and the issuance of write
requests in this manner until all write requests have been
issued for the memory transfer operation. The first threshold
may be greater than the second threshold.

In some examples, the first threshold may be based on the
size of buffer 36. For example, the first threshold may, in some
examples, be equal to the maximum number of read data units
or that buffer 36 is capable of storing at one time where a read
data unit corresponds to the source data returned in response
to a single read request. In some examples, write engine 40
may monitor the amount of unconsumed source data cur-
rently stored in buffer 36 to determine whether the amount of
consumed data stored in buffer 36 is greater than or equal to
the first threshold. For example, write engine 40 may utilize a
signal generated by buffer 36 that is indicative of whether
buffer 36 is full or a signal generated by buffer 36 that is
indicative of whether the amount of data stored in buffer 36 is
greater than or equal to a threshold to determine whether the
amount of consumed data stored in buffer 36 is greater than or
equal to the first threshold.

In further examples, the second threshold may be equal to
zero. That is, write engine 40 may cease consuming source
data and issuing write requests when there is no more uncon-
sumed data in buffer 36. In other words, write engine 40 may
cease consume source data and issuing write requests once
buffer 36 is empty. In some examples, write engine 40 may
utilize a signal generated by buffer 36 that is indicative of
whether buffer 36 is empty or a signal generated by buffer 36
that is indicative of whether the amount of unconsumed
source data in buffer 36 is less than or equal to a threshold to
determine whether the unconsumed data is less than or equal
to the second threshold.

The write requests issued by write engine 40 may specify a
memory address or a range of memory addresses within
memory 22 to which specified data is to be written. The data
to be written may be supplied to memory controller 20 by
write engine 40 via one or more data busses in conjunction
with the write request. In some examples, the data to be
written may form a part of the write request. The memory
address or memory address range of the write request may
correspond to a relative location in a destination region that is
the same as the relative location(s) in one or more source
regions from which source data that was used to generate the
destination data was obtained.

Memory subsystem 8 includes memory 22. Memory 22
may store one or more source surfaces 42 and a destination
surface 44. Each of source surfaces 42 and destination surface
44 correspond to a two-dimensional array of pixel data. The
pixel data may include red, green, blue (RGB) color values
and, in some cases, an alpha value (A) for each pixel location
in the surface. Because source surfaces 42 and destination
surface 44 correspond to a two-dimensional array of pixel
data, the pixel data for an individual pixel location in the
surface may be addressed by row and column coordinates.
Each of the source regions used in a memory transfer opera-
tion may correspond to all or a subset of a respective source
surface, and the destination region may correspond to all or a
subset of the destination surface. The source and destination
regions may be the same size and shape, and are typically, but
not necessarily, rectangular-shaped regions. Although FIG. 2
depicts separate source surfaces 42 and a destination surface
44. In some examples, destination surface 44 may be used as
a source surface for a memory transfer operation and/or one
or more of source surfaces 42 may serve as a destination
surface for a memory transfer operation. Memory subsystem

US 9,245,496 B2

25

8 is communicatively coupled to CPU 6, GPU 10, read engine
38 and write engine 40 via bus 18.

In response to receiving memory access requests, memory
subsystem 8 may cause the requested memory operation to be
performed with respect to memory 22. For example, in
response to receiving a read request, memory subsystem 8
may obtain (i.e. read) data stored in memory 22 from one or
more memory locations in memory 22 that correspond to the
one or more memory addresses specified in the read request,
and provide the obtained data to GPU 10 (e.g., read engine
38). As another example, in response to receiving a write
request and write data that corresponds to the write request,
memory subsystem 8 may cause the write data to be stored in
memory 22 at one or more locations that correspond to the
one or more memory addresses specified in the write request.
In some examples, memory subsystem 8 may provide confir-
mation to write engine 40 that the write request was success-
fully completed.

In some examples, the read and write requests issued by
GPU 10 and received by memory subsystem 8 may be in a
format that is consumable by memory 22. In such examples,
memory subsystem 8 may pass the received requests from
GPU 10 directly to memory 22 in order to read data from
and/or write data to memory 22. In further examples, the read
and write requests issued by GPU 10 and received by memory
subsystem 8 may not be in a format that is consumable by
memory 22. In such examples, memory subsystem 8 may
generate one or more memory commands that are consum-
able by memory 22 based on the read and write requests, and
issue such commands to memory 22 in order to read data from
and/or write data to memory 22. In some examples, the one or
more commands may take the form a read sequence of com-
mands for aread operation and a write sequence of commands
for a write operation.

Bus 18 may be implemented using any combination of bus
structures and bus protocols including shared bus structures
and protocols, point-to-point bus structures and protocols,
unidirectional bus structures and protocols, and bidirectional
bus structures and protocols. In some examples, bus 18 may
be configured to include a bidirectional data bus between
GPU 10 and memory subsystem 8, and a unidirectional com-
mand and address bus from GPU 10 to memory subsystem 8.
In further examples, bus 18 may be configured to include a
unidirectional read bus from memory subsystem 8 to GPU 10,
aunidirectional write bus from GPU 10 to memory subsystem
8, and a unidirectional command and address bus from GPU
10 to memory subsystem 8. These bus configurations are
merely examples, and other configurations of bus structures
with more or less types of busses and in the same or a different
configuration may also be used.

As discussed above, in order to perform a memory transfer
operation based on a selected memory transfer mode, com-
mand engine 32 may configure one or more of buffer 36, read
engine 38 and write engine 40 based on the selected memory
transfer mode. In some examples, if the selected memory
transfer mode is the interleave memory transfer mode, then
command engine 32 may configure read engine 38 and write
engine 40 to operate in accordance with an interleave syn-
chronization mode. In such examples, if the selected memory
transfer mode is the sequential memory transfer mode, then
command engine 32 may configure read engine 38 and write
engine 40 to operate in accordance with an sequential syn-
chronization mode.

In additional examples where buffer 36 is a cache with a
configurable cache size, ifthe selected memory transfer mode
is the interleave memory transfer mode, then command
engine 32 may configure read engine 38 and write engine 40

10

15

20

25

30

35

40

45

50

55

60

65

26

to operate in accordance with an interleave synchronization
mode and configure buffer 36 such that the cache line size of
buffer 36 is less than the maximum cache line size of buffer
36. In such examples, if the selected memory transfer mode is
the sequential memory transfer mode, then command engine
32 may configure read engine 38 and write engine 40 to
operate in accordance with an sequential synchronization
mode and configure buffer 36 such that the cache line size of
buffer 36 is equal to the maximum cache line size of buffer 36.

In some examples, when the interleave memory transfer
mode is selected as the memory transfer mode for performing
all or part of a memory transfer operation, command engine
32 may configure read engine 38 and write engine 40 to
operate in the interleave synchronization mode in order to
cause read engine 38 to issue read requests and write engine
40 to issue write requests based on a producer-consumer
paradigm. Causing read engine 38 to issue read requests and
write engine 40 to issue write requests based on a producer-
consumer paradigm may include causing write engine 40 to
issue a write request in response to GPU 10 receiving source
data from memory subsystem 8 and/or memory 22 that is
sufficient for issuing the write request and causing read
engine 38 to issue a read request in response to write engine
40 consuming data from bufter 36 that is sufficient for issuing
a write request.

In further examples, when the sequential memory transfer
mode is selected as the memory transfer mode for performing
all or part of a memory transfer operation, command engine
32 may configure read engine 38 and write engine 40 to
operate in the sequential synchronization mode in order to
cause read engine 38 to issue read requests and write engine
40 to issue write requests based on a mutual exclusion para-
digm. Causing read engine 38 to issue read requests and write
engine 40 to issue write requests based on a mutual exclusion
paradigm may include causing read engine 38 and write
engine 40 to alternate issuing groups of multiple, consecutive
read requests and groups of multiple, consecutive write
requests to memory subsystem 8 and/or memory 22 during
separate time intervals.

In additional examples, when command engine 32 config-
ures read engine 38 and write engine 40 to operate in the
interleave synchronization mode, each time data that is suf-
ficientto issue a write request for amemory transfer operation
is received by GPU 10 (e.g., read engine 38) from memory
subsystem 8 (e.g., memory 22), write engine 40 may consume
the respective data without waiting for additional data to be
subsequently received for at least one other write request. On
the other hand, when command engine 32 configures read
engine 38 and write engine 40 to operate in the sequential
synchronization mode, for at least part of the memory transfer
operation, in response to GPU 10 (e.g., read engine 38)
receiving, from memory subsystem 8 (e.g., memory 22),
source data that is sufficient to issue a write request for the
memory transfer operation, write engine 40 may defer con-
sumption of the source data until additional data is subse-
quently received that is sufficient to issue at least one other
write request. For example, write engine 40 may defer the
consumption of the source data until the amount of uncon-
sumed data is greater than a first threshold.

In further examples, when command engine 32 configures
read engine 38 and write engine 40 to operate in the interleave
synchronization mode, each time write engine 40 consumes
data that is sufficient to issue a write request for the memory
transfer operation, read engine 38 may issue a read request
without waiting for additional data to be subsequently con-
sumed by write engine 40 for at least one other write request.
On the other hand, when command engine 32 configures read

US 9,245,496 B2

27

engine 38 and write engine 40 to operate in the sequential
synchronization mode, for at least part of the memory transfer
operation, in response to write engine 40 consuming data that
is sufficient to issue a write request for the memory transfer
operation, read engine 38 may defer issuance of a subsequent
read request until data is subsequently consumed by write
engine 40 that is sufficient to issue at least one other write
request. For example, read engine 38 may defer the issuance
of'a subsequent read request until the amount of unconsumed
data is less than or equal to a second threshold.

In more examples, when the interleave memory transfer
mode is selected as the memory transfer mode for performing
all or part of a memory transfer operation, command engine
32 may configure read engine 38 and write engine 40 to
operate in the interleave synchronization mode, and issue a
command to read engine 38 and/or write engine 40 to initiate
performance of the memory transfer operation. In response to
receiving the command to initiate performance of the
memory transfer operation, read engine 38 may issue one or
more read requests. Read engine 38 may place source data
received from memory subsystem 8 (e.g., memory 22) in
response to the plurality of read requests into buffer 36. For
each of the plurality of read requests, in response to the source
data being placed in buffer 36 for a respective one of the
plurality of read requests, write engine 40 may consume the
source data placed in buffer 36 and issue a write request based
on the consumed source data. For example, write engine 40
may generate destination data based on the consumed source
data and issue a write request to write the destination data to
a corresponding location in a destination region for the
memory transfer operation. For each of a plurality of write
requests, in response to source data being consumed from
buffer 36 for a respective one of the write requests, read
engine 38 may issue a subsequent read request.

In some cases, read engine 38 may monitor buffer 36 to
determine when data has been consumed from buffer 36 by
write engine 40. In additional cases, read engine 38 may
receive a notification from buffer 36 and/or from write engine
40 to determine when data has been consumed from buffer 36
by write engine 40. In some cases, write engine 40 may
monitor buffer 36 to determine when data has been placed
into buffer 36 by read engine 38. In additional cases, write
engine 40 may receive a notification from buffer 36 and/or
from read engine 38 to determine when data has been placed
into buffer 36 by read engine 38.

In additional examples, when the sequential memory trans-
fer mode is selected as the memory transfer mode for per-
forming all or part of a memory transfer operation, command
engine 32 may configure read engine 38 and write engine 40
to operate in the sequential synchronization mode, and issue
a command to read engine 38 and/or write engine 40 to
initiate performance of the memory transfer operation. In
response to receiving the command to initiate performance of
the memory transfer operation, read engine 38 may issue a
plurality of read requests. Read engine 38 may place source
data received from memory subsystem 8 (e.g., memory 22) in
response to the plurality of read requests into buffer 36. Read
engine 38 may cease to issue read requests in response to
detecting that buffer 36 is full. Write engine 40 may consume
source data in the buffer and issue a plurality of write requests
based on the consumed data in response to detecting that
buffer 36 is full. Write engine 40 may cease to consume
source data in buffer 36 and to issue write requests in response
detecting that buffer 36 is empty. Read engine 38 may resume
issuance of read requests in response to detecting that buffer
36 is empty.

10

20

25

30

35

40

45

55

28

In some cases, read engine 38 and/or write engine 40 may
monitor buffer 36 to determine when buffer 36 is full or
empty. In additional cases, read engine 38 and/or write engine
40 may receive notifications from buffer 36 and/or write
engine 40 to determine when buffer 36 is full or empty.

Although command engine 32 is described herein as per-
forming a memory transfer mode selection and/or as config-
uring the other processing components in GPU 10 based on
the memory transfer mode selection, in other examples, one
or more other components in GPU 10 may perform these
functions in addition to or in lieu of command engine 32. For
example, a dedicated memory transfer mode selection and
configuration unit may be used to perform the above-men-
tioned functionality or read engine 38 and write engine 40
may be configured to perform such functionality.

In some examples, GPU driver 28 executing on CPU 6 (or
other programs executing on CPU 6) may perform any of the
memory transfer mode selection techniques of this disclosure
and provide the selected memory transfer mode to GPU 10.
GPU 10 may then select the memory transfer mode for per-
forming the memory transfer based on the selected memory
transfer mode provided to GPU 10 by CPU6.

In additional examples, GPU driver 28 may receive a
memory transfer mode command from a software application
24 (e.g.,a graphics application) that specifies a memory trans-
fer mode to be used for performing the memory transfer
operation. In response to receiving the memory transfer mode
command, GPU driver 28 may cause GPU 10 to perform a
memory transfer operation based on the memory transfer
mode command. For example, GPU driver 28 may issue one
or more commands to GPU 10 that specify a memory transfer
mode to use when performing a memory transfer operation.

FIG. 3 is a block diagram illustrating an example memory
subsystem 8 that may be used in the example configuration
shown in FIG. 2. As illustrated in FIG. 3, memory subsystem
8 includes a memory controller 20, a memory 22, and a bus
46. Memory controller 20 may be configured to receive
memory access requests from GPU 10, and to service the
received memory access requests with respect to memory 22.
The memory access requests may include read requests and/
or write requests. The memory access requests issued by GPU
10 and received by memory controller 20 may be in a format
that is consumable by memory controller 20. For example, the
memory access requests may conform to an AMBA AXI
specification, an AMBA AHB specification, or any other
memory controller interface.

In some examples, the memory access requests received by
memory controller 20 may not be in a format that is consum-
able by memory 22. In such examples, memory controller 20
may generate one or more memory commands that are con-
sumable by memory 22 and issue such commands to memory
22 in order to read data from and/or write data to memory 22.
In some examples, if memory 22 is a DDR SDRAM, then the
one or more memory commands that are consumable by
memory 22 may be commands that are compatible with a
DDR SDRAM interface.

In some examples, the one or more commands generated
by memory controller 20 may take the form a read sequence
of commands for a read operation and a write sequence of
commands for a write operation. For example, if memory 22
is a DDR SDRAM, the one or more memory commands
generated by memory controller 20 may take the form ofread
sequences of commands and/or write sequences of com-
mands that conform to the DDR SDRAM interface. The read
and write sequences of commands may take the form of the
assertion of one or more control signals that conform to an
DDR SDRAM interface. For example, in response to receiv-

US 9,245,496 B2

29

ing a memory access request, memory controller 20 may
generate signals to activate a particular row and bank of
memory 22, if not already activated, that correspond to the
address specified in the memory access request. Memory
controller 20 may also generate a signal to select a particular
column in the activated row and bank that corresponds to the
address specified in the memory access request. Memory
controller 20 may also generate a signal to indicate to memory
22 whether data should be read from or written to memory 22.
Ifthe memory access request is a write request, then memory
controller 20 may supply write data to memory 22 via a
bi-directional data bus within bus 46. If the memory access
request is a read request, then memory controller 20 may
receive data from memory 22 via the bi-directional data bus
within bus 46 and provide the read data to CPU 14 viabus 18.

Memory 22 is configured to receive read commands and
write commands, and service the commands with respect to
data storage space contained within memory 22. In response
to receiving a read command, memory 22 may obtain data
from the data storage space contained within memory 22 at a
location specified by an address included in the read com-
mand, and provide the obtained data to memory controller 20
via a bi-directional bus within bus 46. In response to receiving
a write command, memory 22 may store data received from
memory controller 20 via the bi-directional bus within bus 46
into data storage space contained within memory 22 at a
location specified by an address included in the write com-
mand.

Source surfaces 42 and destination surface 44 may be
substantially similar to the corresponding components shown
in FIG. 2. Accordingly, in the interest of brevity and to avoid
redundancy, these components will not be described in fur-
ther detail.

Bus 46 may be implemented as any type of bus structure
and operate according to any type of bus protocol. In some
examples, bus 46 may include bit lines that correspond to the
control signals that are used to control memory 22. For
example, if memory 22 is a DDR SDRAM, bus 46 may
include one or more of a clock signal, a chip select signal, a
bank select signal, a row address strobe, a column address
strobe, a write enable signal, a bi-directional data bus, etc.

As discussed above, bus 46 may include a bi-directional
data bus. In other words, the same bit lines in bus 46 may
transfer read data from memory 22 to memory controller 20
when executing a read request and may transfer write data
from memory controller 20 to memory 22 when executing a
write request. Each time memory controller 20 changes from
issuing read requests to issuing write requests or from issuing
write requests to issuing read requests, idle time may be
needed to allow the bi-directional data bus in bus 46 to settle
before changing direction. This settling time may be referred
to as read-write turnaround time.

The sequential memory transfer mode described in this
disclosure may be used to reduce the number of read-to-write
transitions that take place when performing a memory trans-
fer operation, thereby reducing the overall delay that occurs
during the memory transfer operation due to read-write turn-
around time. Although the sequential memory transfer mode
may reduce the delay that occurs during the memory transfer
operation due to read-write turnaround time, for certain types
of memory transfer operations, the sequential memory trans-
fer mode may not necessarily be more efficient than the
interleave memory transfer mode. For example, if a relatively
large, fixed amount of data is always retrieved for a read
operation during the sequential memory transfer mode, then
for small memory transfer operations, the sequential mode

25

30

40

45

50

30

may require the fetching of extraneous data, which may over-
shadow the benefits achieved by reducing read-write turn-
around.

Due to these and other considerations, one type of memory
transfer mode may not universally be the most efficient
memory transfer mode for performing memory transfer
operations. Accordingly, the techniques of this disclosure
may be used to select appropriate memory transfer modes that
are better suited for particular types of memory transfer
operations, thereby improving the performance of a GPU that
may perform varying types and sizes of memory transfer
operations.

FIG. 4 is a block diagram illustrating another example
memory subsystem 8 that may be used in the example con-
figuration shown in FIG. 2. As illustrated in FIG. 4, memory
subsystem 8 includes a memory 22 that is directly coupled to
bus 18 without an intervening memory controller. In this
example, memory 22 may be configured to receive memory
access requests from GPU 10, and to service the received
memory access requests with respect to data storage space
contained within memory 22. The memory access requests
may include read requests and/or write requests.

In some examples, memory 22 may include a built-in
memory controller functionality. In such examples, the
memory access requests issued by GPU 10 and received by
memory 22 may be in a format that is consumable by a
memory controller. For example, the memory access requests
may conform to an AMBA AXI specification, an AMBA
AHB specification, or any other memory controller interface.
The built-in memory controller functionality may convert the
received memory access requests into one or more commands
that are consumable by memory 22. For example, if memory
22 is a DDR SDRAM, then the one or more memory com-
mands that are consumable by memory 22 may be commands
that are compatible with a DDR SDRAM interface.

In further examples, read engine 38 and write engine 40 in
GPU 10 may issue commands to memory subsystem 8 and
memory 22 that are consumable by memory 22. For example,
if memory 22 is a DDR SDRAM, then the one or more
memory commands that are consumable by memory 22 may
be commands that are compatible with a DDR SDRAM inter-
face.

In additional examples, GPU 10 may include built-in
memory controller functionality. In such examples, the
memory access requests issued by read engine 38 and write
engine 40 may not necessarily be in a format that is consum-
able by memory 22. For example, the memory access requests
may conform to an AMBA AXI specification, an AMBA
AHB specification, or any other memory controller interface.
The built-in memory controller functionality in GPU 10 may
convert the received memory access requests into one or more
commands that are consumable by memory 22. For example,
if memory 22 is a DDR SDRAM, then the one or more
memory commands that are consumable by memory 22 may
be commands that are compatible with a DDR SDRAM inter-
face.

In some examples, bus 18 may include a bi-directional data
bus. The sequential memory transfer mode described in this
disclosure may be used to reduce the number of read-to-write
transitions that take place when performing a memory trans-
fer operation, thereby reducing the overall delay that occurs
during the memory transfer operation due to read-write turn-
around time. However, as already discussed above, the
sequential memory transfer mode may not be the most effi-
cient memory transfer mode for all types and sizes of memory
transfer operations. Accordingly, the techniques of this dis-
closure may be used to select appropriate memory transfer

US 9,245,496 B2

31

modes that are better suited for particular types of memory
transfer operations, thereby improving the performance of a
GPU that may perform varying types and sizes of memory
transfer operations.

FIG. 5 is a conceptual diagram illustrating an example
single source memory transfer operation according to this
disclosure. FIG. 5 depicts a source surface 50 and a destina-
tion surface 52, each of which corresponds to a two-dimen-
sional array of pixel data. The pixel data may include red,
green, blue (RGB) color values and, in some cases, an alpha
value (A) for each pixel in the surface. Because each of
surfaces 50, 52 correspond to a two-dimensional array of
pixel data, the pixel data for an individual pixel location in the
surface may be indexed by row and column coordinates. In
some examples, source surface 50 and destination surface 52
may be bitmaps. In further examples, source surface 50 and
destination surface 52 may be a buffer resource, such as, e.g.,
a texture buffer. The example source surface 50 and destina-
tion surface 52 in FIG. 5 are the same shape and size, and are
rectangular-shaped. However, in other examples, source sur-
face 50 and destination surface 52 may not necessarily be the
same shape and size and/or may be other shapes.

Source surface 50 includes a source region 54, and desti-
nation surface 52 includes a destination region 56. Source
region 54 includes a subset of the pixel data included in source
surface 50, and destination region 56 includes a subset of the
pixel data included in destination surface 52. A subset of the
pixel data included in a surface may refer to all or less than all
of the pixel data included in the surface. As shown in FIG. 5,
source region 54 and destination region 56 are the same size
and shape, and are rectangular shaped. In other examples,
however, source region 54 and destination region 56 may not
be rectangular-shaped.

In the example memory transfer operation shown in FI1G. 5,
data is transferred from source region 54 of source surface 50
to destination region 56 of destination surface 52. In general,
the data for each pixel location in source region 54 is trans-
ferred to the corresponding pixel location in destination
region 56. Different pixel locations in different regions may
be said to be corresponding pixel locations if the relative
position of each of the pixel locations in its respective region
is the same. For example, a pixel location in source region 54
may correspond to a pixel location in destination region 56 if
the pixel location in source region 54 has the same relative
location in source region 54 as the relative location in desti-
nation region 56 of the pixel location in destination region 56.
For instance, the third column of the second row in of source
region 54 and destination region 56 have the same relative
location.

The memory transtfer operation shown in FIG. 5 is a single
source memory transfer operation because a single source
region is used as a source operand for the memory transfer
operation. The single source memory transfer operation
shown in FIG. 5 may represent a memory copy operation
where the same data of source region 54 is copied into desti-
nation region 56. Although the memory transfer operation
shown in FIG. 5 shows a separate source surface 50 and
destination surface 52, in other examples, source surface 50
and destination surface 52 may be same surface. In such
examples, source region 54 and destination region 56 may, in
some examples, be different regions within the same surface
between which data is transferred by the memory copy opera-
tion.

FIG. 6 is a conceptual diagram illustrating an example
multiple source memory transfer operation according to this
disclosure. FIG. 6 depicts a first source surface 58, a second
source surface 60, and a destination surface 62. Each of

30

40

45

32

surfaces 58, 60, 62 may be substantially similar to surfaces
50, 52 discussed above with respect to FIG. 5. First source
surface 58 includes a first source region 64, second source
surface 60 includes a second source region 66, and destina-
tion surface 62 includes a destination region 68. First source
region 64 includes a subset of the pixel data included in first
source surface 58, second source region 66 includes a subset
of the pixel data included in second source surface 60, and
destination region 68 includes a subset of the pixel data
included in destination surface 62. As shown in FIG. 5, first
source region 64, second source region 66, and destination
region 68 are the same size and shape, and are rectangular
shaped. In other examples, however, regions 64, 66 and 68
may not be rectangular-shaped.

Inthe example memory transfer operation of FIG. 6, source
data from first source region 64 and source data from second
source region 66 are combined via a raster operation 70 to
generate destination data, and the destination data is placed
into destination region 68 of destination surface 62. In gen-
eral, the data for each pixel location in first source region 64
is combined with data from the corresponding pixel location
in second source region 66, and written to a corresponding
pixel location in destination region 68. Different pixel loca-
tions in different regions may be said to be corresponding
pixel locations if the relative position of each of the pixel
locations in its respective region is the same.

The memory transfer operation shown in FIG. 6 is a mul-
tiple source memory transfer operation because multiple
source regions are used as source operands for the memory
transfer operation. The multiple source memory transfer
operation shown in FIG. 6 may represent a compositing
operation where data from two different source regions are
combined to generate destination data that is written to a
destination region. Although the memory transfer operation
shown in FIG. 6 shows a separate first source surface 58,
second source surface 60 and destination surface 62, in other
examples, one or more of surfaces 58, 60, 62 may be same
surface. For example, second source surface 60 and destina-
tion surface 62 may be the same surface, and second source
region 66 and destination region 68 may be same regions
within that surface. In such an example, the compositing
operation may merge pixel data in first source region 64 with
existing pixel data in destination surface 62 using a particular
raster operator.

FIG. 7 is a conceptual diagram illustrating an example
GPU-assisted single source memory transfer operation
according to this disclosure. The GPU-assisted memory
transfer operation shown in FIG. 7 may be the same memory
transfer operation as that which is depicted in FIG. 5. As
shown in FIG. 7, source surface 50 and destination surface 52
are stored in memory 22.

To perform the memory transfer operation, GPU 10 reads
source data from source region 54, generates destination data
based on the source data read from source region 54, and
writes the destination data to destination region 56. The des-
tination data may be the same as the source data.

For each pixel location in source region 54, GPU 10 may
issue a read request to read source data from source region 54
that corresponds to the respective pixel location. In response
to receiving the read request, memory 22 may provide the
source data that corresponds to the respective pixel location to
GPU 10. In some examples, GPU 10 may store the source
data in a buffer in GPU 10. GPU 10 may generate destination
data for the respective pixel location based on the source data
for the respective pixel location. For a memory copy opera-
tion, the destination data for the respective pixel location may
be the same as the source data for the respective pixel loca-

US 9,245,496 B2

33

tion. GPU 10 may issue a write request to write the destina-
tion data to a pixel location in destination region 56 that
corresponds to the respective pixel location of source region
54. In response to receiving the write request, memory 22
may store the destination data to the pixel location in desti-
nation region 56 that corresponds to the respective pixel loca-
tion of source region 54. GPU 10 may perform these opera-
tions for each pixel location in source region 54 and
corresponding pixel location in destination region 56.

FIG. 8 is a conceptual diagram illustrating an example
GPU-assisted multiple source memory transfer operation
according to this disclosure. The example GPU-assisted
memory transfer operation shown in FIG. 8 may be the same
memory transfer operation as that which is depicted in FIG. 6.
As shown in FIG. 8, first source surface 58, second source
surface 60, and destination surface 62 are stored in memory
22.

To perform the memory transfer operation, GPU 10 reads
source data from first source surface 58 and second source
surface 60, generates destination data based on the source
data read from first source surface 58 and second source
surface 60, and writes the destination data to destination
surface 62. The destination data may be based on a combina-
tion of the source data. For example, GPU 10 may generate
the destination data based on a raster operator that specifies
the manner in which the source data from first source surface
58 and second source surface 60 are to be combined. A raster
operations unit of GPU 10 (e.g., raster operations unit 34
shown in FIG. 2) may be used to combine the data.

For each pixel location in first source region 64, GPU 10
may issue a read request to read first source data from first
source region 64 that corresponds to the respective pixel
location, and issue a read request to read second source data
from a pixel location in second source region 66 that corre-
sponds to the respective pixel location in first source region 64
(i.e., a pixel location in second source region 66 that has the
same relative location as the respective pixel location in first
source region 64). In response to receiving the read requests,
memory 22 may provide first source data that corresponds to
the respective pixel location in first source region 64 to GPU
10, and second source data that corresponds to a correspond-
ing pixel location in second source region 66 to GPU 10. In
some examples, GPU 10 may store the source data in a buffer
in GPU 10. GPU 10 may generate destination data for the
respective pixel location based on the first source data and the
second source data for the respective pixel location. For a
compositing operation, the source data may be combined
according to a raster operation to generate the destination
data. GPU 10 may issue a write request to write the destina-
tion data to a pixel location in destination region 68 that
corresponds to the respective pixel location of first source
region 64. GPU 10 may perform these operations for each set
of corresponding pixel locations in first source region 64,
second source region 66, and destination region 68.

FIGS. 9-12 are timing diagrams that illustrate example
timing characteristics for various memory transfer operations
that are performed according to the various memory transfer
modes of this disclosure. The timing diagrams in FIGS. 9-12
are described with respect to the configuration of computing
device 2 shown in FIG. 3 for exemplary purposes. However,
it should be understood that other devices that have the same
or different components in the same or a different configura-
tion may be used to perform the techniques of this disclosure.

It should be noted that the timing diagrams presented in
FIGS. 9-12 are provided merely to depict general concepts of
this disclosure that relate to the issuance of read requests and
write requests in various memory transfer modes and to the

10

15

20

25

30

35

40

45

50

55

60

34

variations in read-write turnaround delay that may occur
when using the different memory transfer modes. As such, it
is understood that these timing diagrams are not intended to
be physically rigorous or exhaustive models of all timing
considerations that may occur when accessing a memory.
Similarly, different memory controllers and/or memories
may respond to read requests and write requests in a manner
that is different than that which is depicted in the timing
diagrams of FIGS. 9-12. As such, it should be understood that
the techniques of this disclosure are not limited to the par-
ticular memory controller behavior and/or memory behavior
depicted in FIGS. 9-12.

FIGS. 9A and 9B are a timing diagram that illustrates
example timing characteristics for a single source memory
transfer operation that is performed according to the inter-
leave memory transfer mode of this disclosure. As discussed
above, the memory transfer operation depicted in FIGS. 9A
and 9B is performed with the configuration of computing
device 2 illustrated in FIG. 3. As shown in FIG. 3, the con-
figuration includes a memory controller 20 that is communi-
catively coupled to a GPU 10 via a bus 18 and that is com-
municatively coupled to memory 22 via a bus 46. In order to
perform the memory transtfer operation according to the inter-
leave memory transfer mode, command engine 32 may con-
figure read engine 38 and write engine 40 to operate in an
interleave synchronization mode. The memory transfer
operation depicted in FIGS. 9A and 9B is performed with
respect to a source region and a destination region that each
have twelve pixels. Therefore, during the memory transfer
operation, twelve read requests and twelve write requests are
performed with respect to memory 22.

In FIGS. 9A and 9B, each row represents a particular time
slot or time interval during the performance of the memory
transfer operation with the first row being the earliest time slot
and the last row being the latest time slot. The “Time” column
represents the time slot number.

The “Read Engine” column includes “Read” events, which
represent read requests that are issued by read engine 38. The
“Write Engine” column includes “Write” events, which rep-
resent write requests that are issued by write engine 40. The
read and write requests may be sent from GPU 10 to memory
controller 20 via one or more command and/or addresses bus
channels within bus 18.

The numbers following the read requests enumerate differ-
ent read requests associated with different pixel locations in a
source region. The numbers following the write requests enu-
merate different write requests associated with different pixel
locations in a destination region. A read request and a write
request that have the same number indicates that the read
request and write request are performed with respect to cor-
responding pixel locations (i.e., pixels that have the same
relative location) in the source and destination regions. In
other words, the write data for the write request with a par-
ticular number is generated based on the source data received
in response to a read request having that same particular
number.

The “Read Bus™ and “Write Bus” columns represent inde-
pendent data channels for transferring data between GPU 10
and memory controller 20. The “Read Bus” and “Write Bus”
may correspond to bus 18 shown in FIG. 3. The “Read Bus”
may be a unidirectional bus channel within bus 18 that trans-
ports read data from memory controller 20 to GPU 10. The
“Write Bus” may be a unidirectional bus channel within bus
18 that transports write data from GPU 10 to memory con-
troller 20.

The “Read Bus” column includes “ReadData” events that
represent source data that is transferred from memory con-

US 9,245,496 B2

35

troller 20 to GPU 10 in response to a particular read request
issued by read engine 38. The number following the “Read-
Data” event indicates the read request that corresponds to the
source data represented by the “ReadData” event. The “Write
Bus” column includes “WriteData” events that represent des-
tination data that is transferred from GPU 10 to memory
controller 20 in conjunction with a write request issued by
write engine 40. The number following the “WriteData”
event indicates the write request that corresponds to the des-
tination data represented by the “WriteData” event.

The “Memory Controller” column includes “ReadCom-
mand” events and “WriteComand” events that represent read
commands and write commands, respectively, that are sent
from memory controller 20 to memory 22. The commands
may be sent over one or more command and/or addresses bus
channels within bus 46. The number following the “Read-
Command” event indicates the read request that corresponds
to the read command represented by the “ReadCommand”
event. Similarly, the number following the “WriteCommand”
event indicates the write request that corresponds to the write
command represented by the “WriteCommand” event.

The “Memory Bus” column represents a bi-directional
data bus between memory controller 20 and memory 22. The
bi-directional data bus may be part of bus 46. The “Memory
Bus” column includes “ReadData” events that represent
source data that is transferred from memory 22 to memory
controller 20 in response to a particular read command issued
by memory controller 20, and “WriteData” events that repre-
sent destination data that is transferred from memory control-
ler 20 to memory 22 in conjunction with a particular write
command issued by memory controller 20. The number fol-
lowing the “ReadData” event indicates the read command
that corresponds to the source data represented by the “Read-
Data” event. The number following the “WriteData” event
indicates the write command that corresponds to the destina-
tion data represented by the “WriteData™ event.

The memory transfer operation depicted in FIGS. 9A and
9B is performed with a memory architecture that supports
pipelined read access and pipelined write access. Pipelined
read access may allow GPU 10 and/or memory controller 20
to issue a subsequent read request prior receiving data in
response to all previously issued read requests. In other
words, pipelined read access may allow GPU 10 and/or
memory controller 20 to issue a first read request, and to issue
a second read request after issuing the first read request and
prior to receiving source data in response to the first read
request.

Pipelined write access may allow GPU 10 and/or memory
controller 20 to issue a subsequent write request prior receiv-
ing confirmation that all previously issued write requests have
completed. In other words, pipelined write access may allow
GPU 10 and/or memory controller 20 to issue a first write
request, and to issue a second write request after issuing the
first write request and prior to receiving confirmation that the
first write request has completed.

The execution of the memory transfer operation begins at
time slots 1-4 where read engine 38 begins to issue read
requests. Memory controller 20 converts each read request
into a read command. During time slots 2-5, memory control-
ler 20 issues the read commands to memory 22 via bus 46
(i.e., the memory bus). In this example, memory 22 is con-
figured to return read data in response to a read request at the
second time slot after receiving a read command. For
example, in response to receiving “ReadCommand1” at time
slot 2, memory 22 returns “ReadDatal,” which corresponds
to “ReadCommand1” at time slot 4. During time slots 4-7,
memory 22 transfers the read data for the first four read

10

15

20

25

30

35

40

45

50

55

60

65

36

requests to memory controller 20. During time slots 5-8,
memory controller 20 redirects the read data to GPU 10 via
the “Read Bus.”

At time slot 5, write engine 40 detects that source data that
is sufficient to issue a write request has been received by GPU
10 in response to a read request. In this example, source data
that is sufficient to issue a write request corresponds to one
source data unit received in response to a single read request.
During time slot 6, in response to detecting that source data
that is sufficient to issue a write request has been received by
GPU 10, write engine 40 consumes the received source data,
generates destination data based on the source data, issues a
write request to memory controller 20, and transfers the des-
tination data to memory controller 20 via the “Write Bus.” In
some examples, the destination data may be identical to the
source data.

At time slot 6, memory controller 20 receives the write
request, but does not issue a write command to memory 22
until time slot 11 for at least two reasons. First, memory
controller 20 is still waiting to receive source data from
memory 22 in response to previously issued read requests.
Second, as discussed above, each time a switch occurs
between servicing read and write requests, a particular
amount of idle time may be needed to let the bus settle before
the bus changes directions (e.g., from read to write). This idle
time may be referred to as read-write turnaround delay. In the
example of FIGS. 9A and 9B, the read-write turnaround delay
is two idle cycles (i.e. time slots). As such, after the “Read-
Data4” event, memory controller 20 delays the issuance of
“WriteCommand1” for two time slots. In conjunction with
issuing “WriteCommand1,” memory controller 20 transfers
“WriteDatal” over the memory bus to memory 22.

Returning to time slot 6, read engine 38 detects that source
data that is sufficient to issue a write request has been con-
sumed by write engine 40. During time slot 7, in response to
detecting that source data that is sufficient to issue a write
request has been consumed by write engine 40, read engine
38 issues a subsequent read request. Also during time slot 7,
write engine 40 issues the “Write2” write request in response
to GPU 10 receiving “ReadData2.”

At this point, memory controller 20 has multiple different
types of memory access requests to arbitrate and prioritize.
For the example memory transfer operation depicted in FIGS.
9A and 9B, memory controller 20 processes memory access
requests that were received earlier prior to memory access
requests that were received later. If a read request and a write
request are receiving during the same time slot, memory
controller 20 processes the read request prior to the write
request. Therefore, even though both a read request and a
write request are received by memory controller 20 during
time slot 7, memory controller 20 processes the read request
prior to processing the write request. This is shown in FIG. 9A
where memory controller 20 issues “ReadCommand5” dur-
ing time slot 11 and “WriteCommand2” during time slot 16.
It should be noted that the rules above are merely one example
of an arbitration and prioritization scheme that could be
implemented in a memory controller 20, and other types of
arbitration and prioritization schemes may also be used in
other examples.

Following time slot 11, read engine 38 and write engine 40
continue to issue read requests and write requests according
to a producer-consumer paradigm. After all twelve pixels in
the source region have been read and all twelve pixels in the
destination region have been written, the memory transfer
operation completes.

As shown in FIGS. 9A and 9B, the interleave memory
transfer mode may cause read requests and write requests to

US 9,245,496 B2

37

be interleaved. For example, during time slots 7-9, GPU 10
issues read requests and write requests to memory controller
20 during the same time slots. This causes memory controller
20 to interleave read requests and write requests as shown in
the “Memory Bus” column in time slots 11-28. As another
example, during time slots 10-39, GPU 10 issues read
requests and write requests to memory controller 20 in an
interleaved fashion, which in turn causes memory controller
20 to process the requests in an interleaved fashion during
time slots 29-55. Because of the interleaving, a significant
number of time slots are idle on the “Memory Bus” as the bus
frequently changes directions.

FIG. 10 is a timing diagram that illustrates example timing
characteristics for a single source memory transfer operation
that is performed according to the sequential memory transfer
mode of this disclosure. Similar to the memory transfer
operation depicted in FIGS. 9A and 9B, the memory transfer
operation in FIG. 10 is performed with the configuration of
computing device 2 illustrated in FIG. 3. Also similar the
memory transfer operation depicted in FIGS. 9A and 9B, the
memory transfer operation depicted in FIG. 10 supports pipe-
lined read access and pipelined write access. The format of
the table depicted in FIG. 10 is substantially similar to the
table shown in FIGS. 9A and 9B, and therefore will not be
described in further detail.

In order to perform the memory transfer operation accord-
ing to the sequential memory transfer mode, command engine
32 may configure read engine 38 and write engine 40 to
operate in an sequential synchronization mode. The memory
transfer operation depicted in FIG. 10 is performed with
respect to a source region and a destination region that each
have twelve pixels. Therefore, during the memory transfer
operation, twelve read requests and twelve write requests are
performed with respect to memory 22.

The execution of the memory transfer operation begins at
time slots 1-4 where read engine 38 begins to issue read
requests. At time slot 5, read engine 38 ceases to issue read
requests in response to the number of issued read requests
being greater than or equal to the first threshold. In this
example, the first threshold number is four read requests.

At time slot 8, write engine 40 detects that the amount of
unconsumed data stored in buffer 36 is greater than or equal
to the first threshold. At time slot 9, in response to detecting
that the amount of unconsumed data stored in buffer 36 is
greater than or equal to the first threshold, write engine 40
begins to consume source data from buffer 36, generate des-
tination data based on the consumed source data, and issue
write requests to write the destination data to memory 22. At
time slot 13, write engine 40 detects that the amount of
unconsumed data in buffer 36 is less than or equal to a second
threshold. In response to detecting that the amount of uncon-
sumed data in buffer 36 is less than or equal to a second
threshold, write engine 40 ceases to consume source data and
issue write requests for the consumed source data. In this
example, the second threshold is zero.

At time slot 12, read engine 38 detects that the amount of
unconsumed data in buffer 36 is less than or equal to a second
threshold, and resumes the issuance of read requests at time
slot 13. Read engine 38 and write engine 40 may continue to
alternate issuing sequences of consecutive read requests and
sequences of consecutive write requests according to the
sequential memory transfer mode. After all twelve pixels in
the source region have been read and all twelve pixels in the
destination region have been written, the memory transfer
operation completes.

As shown in FIG. 10, the sequential memory transfer mode
may cause read requests and write requests to be issued in

25

30

35

40

45

50

55

60

65

38

separate groups of read requests and write requests. For
example, during time slots 1-4, GPU 10 issues a group of four
consecutive read requests, and during time slots 9-12, GPU
10 issues a group of four consecutive write requests. As
shown in FIG. 10, issuing separate groups of read and write
requests caused the number of times that the “Memory Bus”
changed directions to be reduced relative to the interleave
memory transfer mode shown in FIGS. 9A and 9B. As such,
the sequential memory mode may reduce the overall read-
write turnaround delay that occurs when performing a
memory transfer operation relative to the interleave memory
transfer mode. This can be seen by observing that the same
memory transter operation took 61 time slots to complete in
FIGS. 9A and 9B when performed according to the interleave
transfer mode and 37 time slots to complete in FIG. 10 when
performed according to the sequential memory transfer
mode.

Although the sequential memory transfer mode may
reduce the delay that occurs during the memory transfer
operation due to read-write turnaround time, for certain types
of memory transfer operations, the sequential memory trans-
fer mode may not necessarily be more efficient than the
interleave memory transfer mode. For example, if a relatively
large, fixed amount of data is always retrieved for a read
operation during the sequential memory transfer mode, then
for small memory transfer operations, the sequential mode
may require the fetching of extraneous data, which may over-
shadow the benefits achieved by reducing read-write turn-
around.

Due to these and other considerations, one type of memory
transfer mode may not universally be the most efficient
memory transfer mode for performing memory transfer
operations. Accordingly, the techniques of this disclosure
may be used to select appropriate memory transfer modes that
are better suited for particular types of memory transfer
operations, thereby improving the performance of a GPU that
may perform varying types and sizes of memory transfer
operations.

FIGS. 11A and 11B are a timing diagram that illustrates
example timing characteristics for a multiple source memory
transfer operation that is performed according to the inter-
leave memory transfer mode of this disclosure. Similar to the
memory transfer operation depicted in FIGS. 9A and 9B, the
memory transfer operation in FIGS. 11A and 11B is per-
formed with the configuration of computing device 2 illus-
trated in FIG. 3. Also similar the memory transfer operation
depicted in FIGS. 9A and 9B, the memory transfer operation
depicted in FIGS. 11A and 11B supports pipelined read
access and pipelined write access.

In order to perform the memory transfer operation accord-
ing to the interleave memory transfer mode, command engine
32 may configure read engine 38 and write engine 40 to
operate in an interleave synchronization mode. The memory
transfer operation depicted in FIGS. 11A and 11B is per-
formed with respect to two different source regions and a
destination region, each of which have eight pixels. There-
fore, during the memory transfer operation, sixteen read
requests and eight write requests are performed with respect
to memory 22.

The format of the table depicted in FIGS. 11A and 11B is
similar to the table shown in FIGS. 9A and 9B except that read
requests, read commands, and read data are designated by
numerals and letters (e.g., “1A,” “1B,” “2A.” “2B,” etc.). In
this case, the different letters represent different source
regions, and the different numerals represent corresponding
pixel locations (i.e., pixels that have the same relative loca-
tion) in different regions. For example, “Read1A” is a read

US 9,245,496 B2

39

request for a particular pixel location in a first source region,
and “Read1B” is a read request for a corresponding pixel
location in a second source region. In this example, “Writel”
may be a write request that writes destination data to a pixel
location in the destination region that corresponds to the pixel
locations for both “Read1A” and “Read1B.” The destination
data for a pixel location may be generated based on the source
data associated with corresponding pixel locations in both
source regions. For example, GPU 10 may generate “Writ-
eDatal” based on “ReadDatal A” and “ReadDatalB.” A ras-
ter operation may be used to generate the destination data.

Read engine 38 and write engine 40 operate in a substan-
tially similar manner to that which was described with respect
to FIGS. 9A and 9B except that the data that is sufficient to
issue a write request for the memory transfer operation may
be two source data units returned in response to two different
read requests rather than a single source data unit returned in
response to a single read request. For example, at time slot 6,
write engine 40 detects that source data that is sufficient to
issue a write request (i.e., ‘“ReadDatalA” and
“ReadDatalB”) for the memory transfer operation has been
received by GPU 10, and during time slot 7, in response to
detecting that source data that is sufficient to issue a write
request for the memory transfer operation has been received
by GPU 10, write engine 40 consumes the received source
data, generates destination data based on the consumed
source data, issues a write request to memory controller 20,
and transfers the destination data to memory controller 20 via
the “Write Bus”

As another example, at time slot 7, read engine 38 detects
that source data that is sufficient to issue a write request (i.e.,
“ReadDatal A” and “ReadDatalB”) for the memory transfer
operation has been consumed by write engine 40. During time
slot 8, in response to detecting that source data that is suffi-
cient to issue a write request for the memory transfer opera-
tion has been consumed by write engine 40, read engine 38
issues a subsequent read request.

FIG. 12 is a timing diagram that illustrates example timing
characteristics for a multiple source memory transfer opera-
tion that is performed according to the sequential memory
transfer mode of this disclosure. Similar to the memory trans-
fer operation depicted in FIGS. 11A and 11B, the memory
transfer operation in FIG. 12 is performed with the configu-
ration of computing device 2 illustrated in FIG. 3. Also simi-
lar the memory transfer operation depicted in FIGS. 11A and
11B, the memory transfer operation depicted in FIG. 12 sup-
ports pipelined read access and pipelined write access. The
format of the table depicted in FIG. 12 is substantially similar
to the table shown in FIGS. 11A and 11B, and therefore will
not be described in further detail.

In order to perform the memory transfer operation accord-
ing to the sequential memory transfer mode, command engine
32 may configure read engine 38 and write engine 40 to
operate in an sequential synchronization mode. The memory
transfer operation depicted in FIGS. 11A and 11B is per-
formed with respect to two different source regions and a
destination region, each of which have eight pixels. There-
fore, during the memory transfer operation, sixteen read
requests and eight write requests are performed with respect
to memory 22.

As shown in FIG. 12, issuing separate groups of read and
write requests caused the number of times that the “Memory
Bus” changed directions to be reduced relative to the inter-
leave memory transfer mode shown in FIGS. 11A and 11B.
As such, the sequential memory mode may reduce the overall
read-write turnaround delay that occurs when performing a
memory transfer operation relative to the interleave memory

10

15

20

25

30

35

40

45

50

55

60

65

40

transfer mode. This can be seen by observing that the same
memory transter operation took 53 time slots to complete in
FIGS. 11A and 11B when performed according to the inter-
leave transfer mode and 33 time slots to complete in FIG. 12
when performed according to the sequential memory transfer
mode.

Again, one type of memory transfer mode may not univer-
sally be the most efficient memory transfer mode for perform-
ing memory transfer operations. Accordingly, the techniques
of'this disclosure may be used to select appropriate memory
transfer modes that are better suited for particular types of
memory transfer operations, thereby improving the perfor-
mance of a GPU that may perform varying types and sizes of
memory transfer operations.

FIGS. 13-19 illustrate different techniques for performing
memory transfer operations according to the interleave and
sequential memory transfer modes of this disclosure. The
techniques shown in FIGS. 13-19 are described as being
performed by GPU 10 shown in FIGS. 1 & 2 for exemplary
purposes. In other examples, the techniques illustrated in
FIGS. 13-19 may be implemented in other systems that have
same or different components in the same or a different con-
figuration.

FIG. 13 is aflow diagram illustrating an example technique
for performing a memory transfer operation according to the
interleave memory transfer mode of this disclosure. GPU 10
initiates a memory transfer operation (100). GPU 10 issues a
read request to memory subsystem 8 (e.g., memory controller
20 or memory 22) to read source data associated with a pixel
location within a source region (102).

GPU 10 waits until source data has been received from
memory subsystem 8 (e.g. memory controller 20 or memory
22) in response to the read request. For example, GPU 10
determines if source data has been received from memory
subsystem 8 in response to the read request (104). If the
source data has not been received from memory subsystem 8
in response to the read request, GPU 10 loops back to decision
box 104. In response to receiving the source data from
memory subsystem 8, GPU 10 consumes the data, generates
destination data based on the source data, and issues a write
request to write the destination data to a corresponding pixel
location in a destination region (106).

In response to source data being consumed, GPU 10 issues
asubsequent read request provided more data needs to be read
for the memory transfer operation. More specifically, GPU 10
determines if there is more data to read (108). If there is more
data to read, GPU 10 proceeds to process box 102 and issues
a subsequent read request. If there is no more data to read,
GPU 10 completes the memory transfer operation (110).

FIG. 14 is aflow diagram illustrating an example technique
for issuing read requests according to the interleave synchro-
nization mode of this disclosure. Read engine 38 initiates a
memory transfer operation (112). Read engine 38 issues a
read request to memory subsystem 8 (e.g., memory controller
20 or memory 22) to read source data associated with a pixel
location within a source region (114).

Read engine 38 waits until source data has been consumed
from buffer 36 by write engine 40. For example, read engine
38 determines if source data has been consumed from buffer
36 by write engine 40 (116). If the source data has not been
consumed from buffer 36, then GPU 10 loops back to deci-
sion box 116.

In response to source data being consumed from buffer 36
by write engine 40, read engine 38 issues a subsequent read
request provided more data needs to be read for the memory
transfer operation. For example, read engine 38 determines if
there is more data to read (118). If there is more data to read,

US 9,245,496 B2

41

read engine 38 proceeds to process box 114 and issues a
subsequent read request. If there is no more data to read, read
engine 38 completes the memory transtfer operation (120).

FIG. 15 is a flow diagram illustrating an example technique
for issuing write requests according to the interleave synchro-
nization mode of this disclosure. Write engine 40 initiates a
memory transfer operation (122).

Write engine 40 waits until source data has been received
from memory subsystem 8 (e.g. memory controller 20 or
memory 22) in response to the read request. For example,
write engine 40 determines if source data has been received
by GPU 10 from memory subsystem 8 in response to the read
request (124). For instance, write engine 40 may determine if
read engine 38 placed source data into buffer 36. If the source
data has not been received from memory subsystem 8 in
response to the read request, write engine 40 loops back to
decision box 124. In response to determining that source data
has been received by GPU 10, memory 22 consumes the data,
generates destination data based on the source data, and
issues a write request to write the destination data to a corre-
sponding pixel location in a destination region (126).

Write engine 40 determines if there is more data to con-
sume as part of the memory transfer operation (128). If there
is more data to consume, write engine 40 proceeds to decision
box 124 and waits for more source data to be received. Ifthere
is no more data to consume as part of the memory transfer
operation, write engine 40 completes the memory transfer
operation (130).

FIG. 16 is a flow diagram illustrating an example technique
for performing a memory transtfer operation according to the
sequential memory transfer mode of this disclosure. GPU 10
initiates a memory transfer operation (132). GPU 10 issues a
read request to memory subsystem 8 (e.g., memory controller
20 or memory 22) to read source data associated with a pixel
location within a source region (134).

GPU 10 determines whether the number of read requests
that have been issued is greater than or equal to a first thresh-
o0ld (136). In response to determining that the number of read
requests that have been issued is not greater than or equal to
the first threshold, GPU 10 issues another read request (134).
GPU 10 continues to issue read requests until the number of
read requests that have been issued is greater than or equal to
the first threshold. In response to determining that the number
of read requests that have been issued is greater than or equal
to the first threshold, GPU 10 ceases to issue read requests
(138).

GPU 10 determines whether the amount of unconsumed
source data is greater than or equal to the first threshold (140).
In response to determining that the amount of unconsumed
source data is not greater than or equal to the first threshold,
GPU 10 continues to cease to issuing read requests (138). In
response to determining that the amount of unconsumed
source data is greater than or equal to the first threshold, GPU
10 begins consuming source data, generating destination data
based on the source data, and issuing write requests (142).

GPU 10 determines whether the amount of unconsumed
source data is less than or equal to a second threshold (144).
The second threshold may be less than the first threshold. In
response to determining that the amount of unconsumed
source data is not less than or equal to the second threshold,
GPU 10 continues to consume source data, generate destina-
tion data, and issue write requests (142). GPU 10 continues to
consume source data, generate destination data, and issue
write requests until the amount of unconsumed source data is
less than or equal to the second threshold. In response to
determining that the amount of unconsumed source data is

10

15

20

25

30

35

40

45

50

55

60

65

42

less than or equal to the second threshold, GPU 10 ceases to
consume source data, generate destination data, and issue
write requests (146).

Also, in response to determining that the amount of uncon-
sumed source data is less than or equal to the second thresh-
old, GPU 10 may resume issuing read requests provided there
is more data to read as part of the memory transfer operation.
For example, GPU 10 determines if there is more data to read
(148). If there is more data to read, GPU 10 proceeds to
process box 134 and issues a subsequent read request. If there
is no more data to read, GPU 10 completes the memory
transfer operation (150).

FIG. 17 is aflow diagram illustrating an example technique
for issuing read requests according to the sequential synchro-
nization mode of this disclosure. Read engine 38 initiates a
memory transfer operation (152). Read engine 38 issues a
read request to memory subsystem 8 (e.g., memory controller
20 or memory 22) to read source data associated with a pixel
location within a source region (154).

Read engine 38 determines whether the number of read
requests that have been issued is greater than or equal to a first
threshold (156). In response to determining that the number
of read requests that have been issued is not greater than or
equal to the first threshold, read engine 38 issues another read
request (154). Read engine 38 continues to issue read requests
until the number of read requests that have been issued is
greater than or equal to a first threshold. In response to deter-
mining that the number of read requests that have been issued
is greater than or equal to the first threshold, read engine 38
ceases to issue read requests (158).

Read engine 38 determines whether the amount of uncon-
sumed source data is less than or equal to a second threshold
(160). The second threshold may be less than the first thresh-
old. In response to determining that the amount of uncon-
sumed source data is not less than or equal to the second
threshold, read engine 38 continues to cease to issuing read
requests (158). Read engine 38 continues to cease issuing
read requests until the amount of unconsumed source data is
less than or equal to the second threshold.

Inresponse to determining that the amount of unconsumed
source data is less than or equal to the second threshold, GPU
10 may resume issuing read requests provided there is more
data to read as part of the memory transfer operation. For
example, GPU 10 determines if there is more data to read
(162). If there is more data to read, GPU 10 proceeds to
process box 154 and issues a subsequent read request. If there
is no more data to read, GPU 10 completes the memory
transfer operation (164).

FIG. 18 is a flow diagram illustrating an example technique
for issuing write requests according to the sequential syn-
chronization mode of this disclosure. Write engine 40 ini-
tiates a memory transfer operation (166).

Write engine 40 waits until the amount of unconsumed
source data is greater than or equal to the first threshold. For
example, write engine 40 determines whether the amount of
unconsumed source data is greater than or equal to the first
threshold (168). In response to determining that the amount of
unconsumed source data is not greater than or equal to the first
threshold, write engine 40 continues to wait. In response to
determining that the amount of unconsumed source data is
greater than or equal to the first threshold, write engine 40
begins consuming source data, generating destination data
based on the source data, and issuing write requests (170).

Write engine 40 determines whether the amount of uncon-
sumed source data is less than or equal to a second threshold
(172). The second threshold may be less than the first thresh-
old. In response to determining that the amount of uncon-

US 9,245,496 B2

43

sumed source data is not less than or equal to the second
threshold, write engine 40 continues to consume source data,
generate destination data, and issue write requests (170).
Write engine 40 continues to consume source data, generate
destination data, and issue write requests until the amount of
unconsumed source data is less than or equal to the second
threshold. In response to determining that the amount of
unconsumed source data is less than or equal to the second
threshold, write engine 40 ceases to consume source data,
generate destination data, and issue write requests (174).

Write engine 40 may cease to consume source data, gen-
erate destination data, and issue write requests until the
amount of unconsumed source data is greater than or equal to
the first threshold. Provided that there is more data to con-
sume as part of the memory transfer operation, write engine
40 may resume consuming source data, generating destina-
tion data, and issuing write requests in response to determin-
ing that the amount of unconsumed source data is greater than
or equal to the first threshold. For example, write engine 40
determines if there is more data to consume as part of the
memory transfer operation (176). If there is more data to
consume, write engine 40 proceeds to decision box 168 and
waits for the amount of unconsumed source data is greater
than or equal to the first threshold. If there is no more data to
consume as part of the memory transfer operation, write
engine 40 completes the memory transtfer operation (178).

FIG. 19 is a flow diagram illustrating an example technique
for performing a memory transtfer operation according to the
sequential memory transfer mode of this disclosure. GPU 10
initiates a memory transfer operation (180). GPU 10 activates
read engine 38 (182). When read engine 38 is activated, read
engine 38 issues read requests until read engine 38 is deacti-
vated.

Read engine 38 remains activated until the number of read
requests that have been issued is greater than or equal to a first
threshold. For example, GPU 10 determines whether the
number of read requests that have been issued is greater than
or equal to a first threshold (184). In response to determining
that the number of read requests that have been issued is not
greater than or equal to the first threshold, GPU 10 loops back
to decision block 184. In response to determining that the
number of read requests that have been issued is greater than
or equal to the first threshold, GPU 10 deactivates read engine
38 (186). When read engine 38 is deactivated, read engine 38
may cease issuing read requests.

GPU 10 waits until the amount of unconsumed source data
is greater than or equal to the first threshold. For example,
GPU 10 determines whether the amount of unconsumed
source data is greater than or equal to the first threshold (188).
In response to determining that the amount of unconsumed
source data is not greater than or equal to the first threshold,
GPU 10 loops back to decision block 188. In response to
determining that the amount of unconsumed source data is
greater than or equal to the first threshold, GPU 10 activates
write engine 40 (190). When write engine 40 is activated,
write engine 40 may consume source data, generate destina-
tion data based on the source data, and issue write requests to
write the destination data to memory 22.

Write engine 40 remains activated until the amount of
unconsumed source data is less than or equal to a second
threshold. For example, GPU 10 determines whether the
amount of unconsumed source data is less than or equal to a
second threshold (192). The second threshold may be less
than the first threshold. In response to determining that the
amount of unconsumed source data is not less than or equal to
the second threshold, GPU 10 loops back to decision block
192. In response to determining that the amount of uncon-

10

15

20

25

30

35

40

45

50

55

60

65

44

sumed source data is less than or equal to the second thresh-
old, GPU 10 deactivates write engine 40 (194). When write
engine 40 is deactivated, write engine 40 may cease to con-
sume source data, generate destination data, and issue write
requests.

Also, in response to determining that the amount of uncon-
sumed source data is less than or equal to the second thresh-
old, GPU 10 may reactivate read engine 38 provided there is
more data to read as part of the memory transfer operation.
For example, GPU 10 determines if there is more data to read
(196). If there is more data to read, GPU 10 proceeds to
process box 182 and activates read engine 38. If there is no
more data to read, GPU 10 completes the memory transfer
operation (198).

FIG. 20 is a flow diagram illustrating an example technique
for performing a memory transfer operation according to this
disclosure. The technique in FIG. 20 is described as being
performed by computing device 2 shown in FIGS. 1 & 2 for
exemplary purposes. In other examples, the technique illus-
trated in FIG. 20 may be implemented in other systems that
have same or different components in the same or a different
configuration.

CPU 6 and/or GPU 10 selects a memory transter mode for
performing all or part of the memory transter operation (202).
In some examples, the memory transfer mode may be
selected from a set of at least two different memory transfer
modes that includes an interleave memory transfer mode and
a sequential memory transfer mode.

GPU 10 performs the memory transfer operation based on
the selected memory transfer mode (204). For example, GPU
10 may perform the memory transter operation based on an
interleave memory transfer mode in response to the interleave
memory transfer mode being selected as the memory transfer
mode for performing the memory transfer operation. As
another example, GPU 10 may perform the memory transfer
operation based on a sequential memory transfer mode in
response to the sequential memory transfer mode being
selected as the memory transfer mode for performing the
memory transter operation.

In some examples, GPU 10 may perform a first part of the
memory transfer operation using a first memory transfer
mode selected from a set of at least two different memory
transfer modes, and perform a second part of the memory
transfer operation using a second memory transfer mode
selected from the set of at least two different memory transfer
modes.

FIGS. 21-22 and 24-26 illustrate different techniques for
selecting a memory transfer mode for performing a memory
transfer operation according to this disclosure. The tech-
niques shown in FIGS. 21-22 and 24-26 are described as
being performed by computing device 2 shown in FIGS. 1 &
2 for exemplary purposes. In other examples, the techniques
illustrated in FIGS. 21-22 and 24-26 may be implemented in
other systems that have same or different components in the
same or a different configuration.

FIG. 21 is aflow diagram illustrating an example technique
for selecting a memory transfer mode for performing a
memory transfer operation based on an amount of data to be
transferred by the memory transfer operation according to
this disclosure. In some examples, the technique shown in
FIG. 21 may be used to implement process block 202 shown
in FIG. 20.

CPU 6 and/or GPU 10 determines a size of a memory
transfer operation (206). The size of the memory transfer
operation may correspond to the amount of data to be trans-
ferred by the memory transfer operation. In some examples,
the size of the memory transfer operation may be specified in

US 9,245,496 B2

45

a memory transfer command. In further examples, CPU 6
and/or GPU 10 may determine the size of the memory transfer
operation based on the dimensions of a source region and a
destination region and based on the number of source regions
that are used in the memory transfer operation.

CPU 6 and/or GPU 10 determines whether the size of the
memory transfer operation is greater than a threshold (208). If
the size of the memory transfer operation is not greater than
the threshold, then CPU 6 and/or GPU 10 selects the inter-
leave memory transfer mode as the memory transfer mode to
be used for performing all or part of a memory transfer opera-
tion (210). If the size of the memory transfer operation is
greater than the threshold, then CPU 6 and/or GPU 10 selects
the sequential memory transfer mode as the memory transfer
mode to be used for performing all or part of a memory
transfer operation (212).

FIG. 22 is a flow diagram illustrating an example technique
for selecting a memory transfer mode for performing a
memory transfer operation based on an amount of overlap a
destination region of the memory transfer operation has with
a fixed, screen-aligned bufter region according to this disclo-
sure. In some examples, the technique shown in FIG. 22 may
be used to implement process block 202 shown in FIG. 20.

CPU 6 and/or GPU 10 determines the screen position of a
destination region that is defined for the memory transfer
operation (214). The screen position may refer to the location
of the destination region in screen space. In some examples,
CPU 6 and/or GPU 10 may determine the screen position
based on data received in a memory transfer command.

CPU 6 and/or GPU 10 selects a screen-aligned buffer
region that overlaps at least partially with the destination
region (216). FIG. 23 is a conceptual diagram illustrating a
screen with a plurality of screen-aligned buffer regions (i.e.,
tiles 1-20) and a destination surface 218. As shown in FIG. 23,
screen-aligned buffer regions 1-4, 6-9 and 11-14 overlap at
least partially with destination surface 218 while screen-
aligned buffer regions 5, 10, 15 and 16-20 do not overlap at all
with destination surface 218.

CPU 6 and/or GPU 10 determines whether the destination
region completely overlaps the selected screen-aligned buffer
region (220). In other words, CPU 6 and/or GPU 10 may
determine whether the destination region fully covers the
selected fixed, screen-aligned buffer region. If the destination
region does not completely overlap the selected screen-
aligned buffer region (e.g., if the destination region does not
fully cover the selected screen-aligned buffer region), then
CPU 6 and/or GPU 10 selects the interleave memory transfer
mode as the memory transfer mode to perform the memory
transfer operation with respect to the selected screen-aligned
buffer region (222). Otherwise, if the destination region com-
pletely overlaps the selected screen-aligned buffer region
(e.g., if the destination region fully covers the selected screen-
aligned bufter region), then CPU 6 and/or GPU 10 selects the
sequential memory transfer mode as the memory transfer
mode to perform the memory transfer operation with respect
to the selected screen-aligned buffer region (224).

For example, with respect to FIG. 23, destination region
218 fully covers fixed, screen-aligned buffer regions 7, 8 and
9. Therefore, CPU 6 and/or GPU 10 may select the sequential
memory transfer mode for performing the memory transfer
operation with respect to screen-aligned buffer regions 7, 8
and 9. Similarly, destination region 218 partially covers, but
does not fully cover, screen-aligned buffer regions 1-4, 6 and
11-14. Therefore, CPU 6 and/or GPU 10 may select the
interleave memory transfer mode for performing the memory
transfer operation with respect to screen-aligned buffer
regions 1-4, 6 and 11-14.

20

40

45

50

46

In some cases, a surface may correspond to the pixels
contained on a display monitor or screen. The screen may be
subdivided into a plurality of regions each having a fixed size
that corresponds to the size of the buffer that is used to store
the read data. These subdivided regions may be referred to as
fixed, screen-aligned buffer regions. In such examples, when
operating in the sequential memory transfer mode, GPU 10
may be configured to transfer data between memory 22 and
GPU 10 in data units of a fixed size that correspond to the size
of the fixed, screen-aligned buffer regions.

If a destination region partially, but not fully, covers a
particular fixed, screen-aligned buffer region, then CPU 6
and/or GPU 10 may select the interleave memory transfer
mode as the memory transfer mode for that region of the
screen because the buffer in which the read data will be stored
will be not be fully utilized. If the sequential memory mode
were selected in such a case, the fixed size memory read
would cause extraneous data to be read from the memory,
which may outweigh any read-write turnaround savings
which would occur by using the sequential memory transfer
mode. On the other hand, if a destination region fully covers
a particular fixed, screen-aligned buffer region, then CPU 6
and/or GPU 10 may select the sequential memory transfer
mode as the memory transfer mode for that region of the
screen because the buffer in which the read data will be stored
will be fully utilized and no time would be wasted retrieving
extraneous data.

In some examples, a memory transfer operation may be
implemented with GPU 10 by rendering one or more primi-
tives that spatially correspond to the destination region of the
memory transfer operation, applying a texture that corre-
sponds to the source region data to the rendered one or more
primitives, and merging the one or more primitives with any
destination data already stored in a frame buffer. In such
examples, CPU 6 and/or GPU 10 may select a memory trans-
fer mode for performing a memory transfer operation with
respect to a fixed, screen-aligned buffer region based on an
amount of overlap a primitive to be rendered has with the
fixed, screen-aligned buffer region. For example, CPU 6 and/
or GPU 10 may select the sequential memory transfer mode
as the memory transfer mode if the primitive to be rendered
fully covers the fixed, screen-aligned buffer region, and select
the interleave memory transfer mode as the memory transfer
mode if the primitive to be rendered does not fully cover the
fixed, screen-aligned buffer region.

FIG. 24 is aflow diagram illustrating an example technique
for selecting a memory transfer mode for performing a
memory transfer operation based on a complexity of a shader
program that is used to perform the memory transfer opera-
tion according to this disclosure. In some examples, the tech-
nique shown in FIG. 24 may be used to implement process
block 202 shown in FIG. 20.

CPU 6 and/or GPU 10 determines a complexity of a shader
program that is used to perform the memory transfer opera-
tion (226). The shader program may, in some examples, be a
pixel shader program. In some examples, the complexity of
the shader program may correspond to the size of the shader
program. In further examples, the complexity of the shader
program correspond to the number of calculations to be per-
formed by the shader program. In further examples, the com-
plexity of the shader program may correspond to the number
of'loops or iterations to be performed by the shader program.

CPU 6 and/or GPU 10 determines whether the complexity
of'the shader program is greater than a threshold (228). If the
complexity of the shader program is not greater than the
threshold, then CPU 6 and/or GPU 10 may select the sequen-
tial memory transfer mode as the memory transfer mode to be

US 9,245,496 B2

47

used for performing all or part of a memory transfer operation
(230). If the complexity of the shader program is greater than
the threshold, then CPU 6 and/or GPU 10 may select the
interleave memory transfer mode as the memory transfer
mode to be used for performing all or part of a memory
transfer operation (232).

FIG. 25 is a flow diagram illustrating an example technique
for selecting a memory transfer mode for performing a
memory transfer operation based on a size of a shader pro-
gram that is used to perform the memory transfer operation
according to this disclosure. In some examples, the technique
shown in FIG. 25 may be used to implement process block
202 shown in FIG. 20.

CPU 6 and/or GPU 10 determines a size of a shader pro-
gram that is used to perform the memory transfer operation
(234). The shader program may, in some examples, be a pixel
shader program. In some examples, the size of the shader
program may correspond to the number of instructions in the
shader program. In further examples, the size of the shader
program may correspond to the number of bytes in the shader
program.

CPU 6 and/or GPU 10 determines whether the size of the
shader program is greater than a threshold (236). If the size of
the shader program is not greater than the threshold, then
CPU 6 and/or GPU 10 may select the sequential memory
transfer mode as the memory transfer mode to be used for
performing all or part of a memory transfer operation (238). If
the size of the shader program is greater than the threshold,
then CPU 6 and/or GPU 10 may select the interleave memory
transfer mode as the memory transfer mode to be used for
performing all or part of a memory transter operation (240).

FIG. 26 is a flow diagram illustrating an example technique
for selecting a memory transfer mode for performing a
memory transfer operation based on a determination of
whether execution of the shader program is likely to be a
performance bottleneck for the memory transfer operation
according to this disclosure. In some examples, the technique
shown in FIG. 26 may be used to implement process block
202 shown in FIG. 20.

CPU 6 and/or GPU 10 makes a determination of whether
execution of the shader program is likely to be a performance
bottleneck for the memory transfer operation (242). The
shader program may, ins some example, be a pixel shader
program. In some examples, CPU 6 and/or GPU 10 may make
the determination based on a complexity of the shader pro-
gram and/or a size of the shader program.

If execution of the shader program is not likely to be a
performance bottleneck for the memory transfer operation
(e.g., the size and/or complexity of the shader program is less
than a threshold), then CPU 6 and/or GPU 10 may select the
sequential memory transfer mode as the memory transfer
mode to be used for performing all or part of a memory
transfer operation (244). If execution of the shader program is
likely to be a performance bottleneck for the memory transfer
operation (e.g., the size and/or complexity of the shader pro-
gram is greater than a threshold), then CPU 6 and/or GPU 10
may select the interleave memory transfer mode as the
memory transfer mode to be used for performing all or part of
a memory transfer operation (246).

FIG. 27 is a flow diagram illustrating an example technique
for performing a memory transfer operation according to this
disclosure. In some examples, the technique shown in FIG. 27
may be used to implement process block 204 shown in FIG.
20.

GPU 10 determines whether the sequential memory trans-
fer mode or the interleave memory transfer mode has been
selected (248). If the sequential memory transfer mode has

25

40

45

48

not been selected (i.e., the interleave memory transfer mode
has been selected), then GPU 10 may configure a cache line
size for a cache that is used to perform the memory transfer
operation to be a first size (250). If the sequential memory
transfer mode has been selected (i.e., the interleave memory
transfer mode has been selected), then GPU 10 may configure
the cache line size for a cache that is used to perform the
memory transfer operation to be a second size (252). The
second size may be larger than the first size. In some
examples, the second size may correspond to a cache line size
that is equal to the entire capacity of the cache, and the first
size may correspond to a cache line size that is equal to less
than the entire capacity of the cache.

According to some aspects of this disclosure, techniques
are described for signaling a memory transfer mode to be used
by a GPU for performing a memory transfer operation. The
signaling techniques may allow a GPU driver and/or a user
application executing on the application processor to control
the memory transfer mode that is used for performing a
memory transter operation.

In some examples, an information field that specifies a
memory transfer mode may be added to one or more existing
GPU commands included in a GPU instruction set architec-
ture (ISA). The information field may, in some cases, be a
single mode bit that specifies a memory transfer mode to be
used for a memory transfer operation associated with the
instruction. For example, a graphics driver may service a
user-level blit command by specifying the source and desti-
nation memory regions to the GPU and issuing a (three-
dimensional) 3D draw call instruction to the GPU. The 3D
draw call instruction may include a mode bit indicating the
memory transfer mode to be used during execution of the 3D
draw call instruction. The GPU may be configured to perform
a memory transfer operation based on the memory transfer
mode specified in the instruction.

In additional examples, the GPU may include a memory
transfer mode state variable that specifies a memory transfer
mode to be used for performing a memory transfer operation.
In such examples, an additional instruction may be added to
the instructions included in the GPU ISA. The additional
instruction may be used to program a state of the memory
transfer mode state variable to a value indicative of a memory
transfer mode to be used for performing a memory transfer
operation. The GPU may be configured to perform the
memory transfer operation based on the state of the memory
transfer mode state variable.

In further examples, an instruction may be added to the
application programming interface (API) for the GPU driver.
The instruction may include a memory transfer mode indica-
tor that indicates a memory transfer mode to be used for
performing the memory transfer operation. The GPU driver
may be configured to cause the GPU to perform a memory
transfer operation based on the memory transfer mode indi-
cator. In this way, a user application may be able to specify the
memory transfer mode to be used by a GPU when performing
a memory transfer operation.

Example aspects of this disclosure include using an inter-
nal memory buffer to allow data to first be read in and then
written out in sequence rather than interleaved. Example
aspects of this disclosure further include a selection algorithm
to automatically rasterize using the internal buffer based on
primitive intersection with rasterization pattern. Thus, a
primitive triangle may not use the internal buffer for the
“narrow” sections while switching to “sequential mode” for
the “wide” sections. Example aspects of this disclosure fur-
ther include a mode bit indicating whether to allow the
“sequential mode” to be used. The mode bit may be set based

US 9,245,496 B2

49

on whether the operation is estimated to be memory effi-
ciency limited. An example implementation may involve
using an existing cache, but changing its operation to use
larger cache lines during the “sequential mode.”

In some examples, a GPU driver and/or a user application
may enable a choice of different memory transfer modes
(rather than force the GPU to do one or the other). In such
examples, the GPU may, in some examples, make the final
decision of the memory transfer mode to be used for a
memory transfer operation based on information discovered
by the GPU during run-time.

The techniques described in this disclosure may be imple-
mented, at least in part, in hardware, software, firmware or
any combination thereof. For example, various aspects of the
described techniques may be implemented within one or
more processors, including one or more microprocessors,
digital signal processors (DSPs), application specific inte-
grated circuits (ASICs), field programmable gate arrays (FP-
GAs), or any other equivalent integrated or discrete logic
circuitry, as well as any combinations of such components.
Theterm “processor” or “processing circuitry” may generally
refer to any of the foregoing logic circuitry, alone or in com-
bination with other logic circuitry, or any other equivalent
circuitry such as discrete hardware that performs processing.

Such hardware, software, and firmware may be imple-
mented within the same device or within separate devices to
support the various operations and functions described in this
disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as
discrete but interoperable logic devices. Depiction of differ-
ent features as modules or units is intended to highlight dif-
ferent functional aspects and does not necessarily imply that
such modules or units must be realized by separate hardware
or software components. Rather, functionality associated
with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or
integrated within common or separate hardware or software
components.

The techniques described in this disclosure may also be
stored, embodied or encoded in a computer-readable
medium, such as a computer-readable storage medium that
stores instructions. Instructions embedded or encoded in a
computer-readable medium may cause one or more proces-
sors to perform the techniques described herein, e.g., when
the instructions are executed by the one or more processors.
Computer readable storage media may include random
access memory (RAM), read only memory (ROM), program-
mable read only memory (PROM), erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), flash memory, a
hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer readable storage
media that is tangible.

Computer-readable media may include computer-readable
storage media, which corresponds to a tangible storage
medium, such as those listed above. Computer-readable
media may also comprise communication media including
any medium that facilitates transfer of a computer program
from one place to another, e.g., according to a communication
protocol. In this manner, the phrase “computer-readable
media” generally may correspond to (1) tangible computer-
readable storage media which is non-transitory, and (2) a
non-tangible computer-readable communication medium
such as a transitory signal or carrier wave.

5

10

15

20

25

30

35

40

45

50

55

60

65

50

Various aspects and examples have been described. How-
ever, modifications can be made to the structure or techniques
of this disclosure without departing from the scope of the
following claims.

What is claimed is:

1. A method comprising:

selecting, with one or more processors, a memory transfer

mode for performing at least part of a memory transfer
operation, the memory transfer mode being selected
from a set of at least two different memory transfer
modes that includes an interleave memory transfer mode
and a sequential memory transfer mode, wherein the
sequential memory transfer mode includes alternate
issuing of groups of multiple, consecutive read requests
and groups of multiple, consecutive write requests dur-
ing separate time intervals; and

performing, with a graphics processing unit (GPU), the

memory transfer operation based on the selected
memory transfer mode.

2. The method of claim 1, wherein selecting, with the one
or more processors, the memory transfer mode comprises:

selecting, with the one or more processors, the memory

transfer mode based on an amount of data to be trans-
ferred by the memory transfer operation.

3. The method of claim 2, wherein selecting, with the one
or more processors, the memory transfer mode based on the
amount of data to be transferred by the memory transfer
operation comprises:

selecting, with the one or more processors, the sequential

memory transfer mode as the memory transfer mode if
the amount of data to be transferred by the memory
transfer operation is greater than a threshold; and
selecting, with the one or more processors, the interleave
memory transfer mode as the memory transfer mode if
the amount of data to be transferred by the memory
transfer operation is not greater than the threshold.

4. The method of claim 1, wherein selecting, with the one
or more processors, the memory transfer mode comprises:

selecting, with the one or more processors, a memory

transfer mode for performing a memory transfer opera-
tion with respect to a fixed, screen-aligned buffer region
based on an amount of overlap a destination region of the
memory transfer operation has with the fixed, screen-
aligned buffer region.

5. The method of claim 1,

wherein performing the memory transfer operation com-

prises executing a shader program, and

wherein selecting, with the one or more processors, the

memory transfer mode comprises selecting the memory
transfer mode based on a determination of whether
execution of the shader program is likely to be a perfor-
mance bottleneck for the memory transfer operation.

6. The method of claim 5, wherein selecting, with the one
or more processors, the memory transfer mode based on the
determination of whether the execution of the shader program
is likely to be the performance bottleneck for the memory
transfer operation comprises:

selecting the sequential memory transfer mode as the

memory transfer mode in response to determining that
the execution of the shader program is not likely to be the
performance bottleneck for the memory transfer opera-
tion; and

selecting the interleave memory transfer mode as the

memory transfer mode in response to determining that
the execution of the shader program is likely to be the
performance bottleneck for the memory transfer opera-
tion.

US 9,245,496 B2

51

7. The method of claim 1,

wherein performing the memory transfer operation com-

prises executing a shader program, and
wherein selecting, with the one or more processors, the
memory transfer mode comprises selecting the memory
transfer mode based on at least one of a size of a shader
program that is used for performing the memory transfer
operation and a complexity of the shader program that is
used for performing the memory transfer operation.
8. The method of claim 7, wherein selecting, with the one
ormore processors, the memory transfer mode based on the at
least one of the size of the shader program that is used for
performing the memory transfer operation and the complex-
ity of the shader program that is used for performing the
memory transfer operation comprises:
selecting, with the one or more processors, the sequential
memory transfer mode as the memory transfer mode if
the at least one of the size of the shader program and the
complexity of the shader program is less than a thresh-
old; and
selecting, with the one or more processors, the interleave
memory transfer mode as the memory transfer mode if
the at least one of the size of the shader program and the
complexity of the shader program is not less than the
threshold.
9. The method of claim 1, wherein performing, with the
GPU, the memory transfer operation comprises:
performing, with the GPU, the memory transfer operation
based on an interleave memory transfer mode in
response to the interleave memory transfer mode being
selected as the memory transfer mode for performing the
memory transfer operation; and
performing, with the GPU, the memory transfer operation
based on a sequential memory transfer mode in response
to the sequential memory transfer mode being selected
as the memory transfer mode for performing the
memory transter operation.
10. The method of claim 9,
wherein performing, with the GPU, the memory transfer
operation based on the interleave memory transfer mode
comprises causing a read engine to issue read requests
and a write engine to issue write requests based on a
producer-consumer paradigm, and
wherein performing, with the GPU, the memory transfer
operation based on the sequential memory transfer mode
comprises causing the read engine to issue read requests
and the write engine to issue write requests based on a
mutual exclusion paradigm.
11. The method of claim 9,
wherein performing, with the GPU, the memory transfer
operation based on the interleave memory transfer mode
comprises, each time source data that is sufficient to
issue a write request for the memory transfer operation is
received by the GPU from a memory, consuming, with
the write engine, the respective source data without wait-
ing for additional source data to be subsequently
received for at least one other write request, and

wherein performing, with the GPU, the memory transfer
operation based on the sequential memory transfer mode
comprises, for at least part of the memory transfer opera-
tion, in response to the GPU receiving, from the
memory, source data that is sufficient to issue a write
request for the memory transfer operation, deferring,
with the write engine, consumption of the source data
until additional source data is subsequently received that
is sufficient to issue at least one other write request.

10

15

20

25

30

35

40

45

50

55

60

52
12. The method of claim 9,
wherein performing, with the GPU, the memory transfer
operation based on the interleave memory transfer mode
comprises, each time a write engine consumes source
data that is sufficient to issue a write request for the
memory transfer operation, issuing, with a read engine,
aread request without waiting for additional source data
to be subsequently consumed by the write engine for at
least one other write request, and
wherein performing, with the GPU, the memory transfer
operation based on the sequential memory transfer mode
comprises, for at least part of the memory transfer opera-
tion, in response to the write engine consuming source
data that is sufficient to issue a write request for the
memory transfer operation, deferring, with a read
engine, issuance of a subsequent read request until addi-
tional source data is subsequently consumed by the write
engine that is sufficient to issue at least one other write
request.
13. The method of claim 1,
wherein the GPU comprises a buffer configured to store
source data received in response to read requests issued
by the GPU to the memory,
wherein performing, with the GPU, the memory transfer
operation based on the interleave memory transfer mode
comprises:
issuing one or more read requests;
placing source data received from the memory in
response to the plurality of read requests into the
buffer;
for each of the plurality of read requests, in response to
the source data being placed in the buffer for a respec-
tive one of the plurality of read requests, consuming
the source data placed in the buffer and issuing a write
request based on the consumed source data; and
for each of a plurality of write requests, in response to
source data being consumed from the buffer for a
respective one of the write requests, issuing a subse-
quent read request, and
wherein performing, with the GPU, the memory transfer
operation based on the sequential memory transfer mode
comprises:
issuing a plurality of read requests;
placing source data received from the memory in
response to the plurality of read requests into the
buffer;
ceasing to issue read requests in response to detecting
that enough read requests have been issued to fill the
buffer;
consuming source data in the buffer and issuing a plu-
rality of write requests based on the consumed source
data in response to detecting that the buffer is full;
ceasing to consume source data in the buffer and to issue
write requests in response detecting that the buffer is
empty; and
resuming issuance of read requests in response to detect-
ing that the buffer is empty.
14. The method of claim 1, further comprising:
performing a first part of the memory transfer operation
using a first memory transfer mode selected from the set
of at least two different memory transfer modes; and
performing a second part of the memory transfer operation
using a second memory transfer mode selected from the
set of at least two different memory transfer modes.
15. The method of claim 1, wherein performing, with the

65 GPU, the memory transfer operation comprises:

selecting a cache line size of a cache that is used for buft-
ering source data retrieved from a memory during the

US 9,245,496 B2

53

memory transfer operation based on the selected
memory transfer mode; and
configuring the cache for the memory transfer operation
based on the selected cache line size.
16. The method of claim 15, wherein selecting the cache
line size comprises:
selecting a cache line size that is equal to an entire capacity
of'the cache in response to the sequential memory trans-
fer mode being selected as the memory transfer mode for
performing the memory transfer operation; and
selecting a cache line size that is less than the entire capac-
ity of the cache in response to the interleave memory
transfer mode being selected as the memory transfer
mode for performing the memory transfer operation.
17. The method of claim 1, wherein the one or more pro-
cessors comprise the GPU, and wherein selecting, with the
one or more processors, the memory transfer mode comprises
selecting, with the GPU, the memory transfer mode for per-
forming the at least part of the memory transfer operation.
18. The method of claim 1, wherein the one or more pro-
cessors comprise a CPU, wherein selecting, with the one or
more processors, the memory transfer mode comprises
selecting, with the CPU, the memory transfer mode for per-
forming the at least part of a memory transfer operation, and
wherein the method further comprises causing the GPU to
perform the memory transfer operation based on the selected
memory transfer mode.
19. A method comprising:
selecting, with one or more processors, a memory transfer
mode for performing at least part of a memory transfer
operation, the memory transfer mode being selected
from a set of at least two different memory transfer
modes that includes an interleave memory transfer mode
and a sequential memory transfer mode; and
performing, with a graphics processing unit (GPU), the
memory transfer operation based on the selected
memory transfer mode wherein selecting, with the one
or more processors, the memory transfer mode based on
an amount of overlap the destination region of the
memory transfer operation has with the fixed, screen-
aligned buffer region comprises:
selecting, with the one or more processors, a memory
transfer mode for performing a memory transfer opera-
tion with respect to a fixed, screen-aligned buffer region
based on an amount of overlap a destination region of the
memory transfer operation has with the fixed, screen-
aligned buffer region;
selecting the sequential memory transfer mode as the
memory transfer mode if the destination region fully
covers the fixed, screen-aligned bufter region; and
selecting the interleave memory transfer mode as the
memory transfer mode if the destination region does not
fully cover the fixed, screen-aligned buffer region.
20. A method comprising:
selecting, with one or more processors, a memory transfer
mode for performing at least part of a memory transfer
operation, the memory transfer mode being selected
from a set of at least two different memory transfer
modes that includes an interleave memory transfer mode
and a sequential memory transfer mode; and
performing, with a graphics processing unit (GPU), the
memory transfer operation based on the selected
memory transfer mode, wherein performing, with the
GPU, the memory transfer operation comprises:
performing, with the GPU, the memory transfer operation
based on an interleave memory transfer mode in
response to the interleave memory transfer mode being

10

15

20

25

30

35

40

45

50

55

60

54

selected as the memory transfer mode for performing the
memory transfer operation, wherein the memory trans-
fer operation based on the interleave memory transfer
mode comprises causing the write engine to issue a write
request in response to the GPU receiving, from a
memory, source data that is sufficient for issuing the
write request and causing the read engine to issue a read
request in response to the write engine consuming the
source data that is sufficient for issuing the write request;
and

performing, with the GPU, the memory transfer operation

based on a sequential memory transfer mode in response
to the sequential memory transfer mode being selected
as the memory transfer mode for performing the
memory transfer operation, and wherein the memory
transfer operation based on the sequential memory
transfer mode comprises causing the read engine and the
write engine to alternate issuing groups of multiple,
consecutive read requests and groups of multiple, con-
secutive write requests during separate time intervals.

21. A device comprising:

at least one memory;

one or more processors configured to select a memory

transfer mode for performing at least part of a memory
transfer operation for the at least one memory, the
memory transfer mode being selected from a set of at
least two different memory transfer modes that includes
an interleave memory transfer mode and a sequential
memory transfer mode, wherein the sequential memory
transfer mode includes alternate issuing of groups of
multiple, consecutive read requests and groups of mul-
tiple, consecutive write requests during separate time
intervals; and

a graphics processing unit (GPU) configured to perform

the memory transfer operation based on the selected
memory transfer mode.

22. The device of claim 21, wherein the one or more pro-
cessors are further configured to select the memory transfer
mode based on an amount of data to be transferred by the
memory transter operation.

23. The device of claim 22, wherein the one or more pro-
cessors are further configured to select the sequential memory
transfer mode as the memory transfer mode if the amount of
data to be transferred by the memory transfer operation is
greater than a threshold, and to select the interleave memory
transfer mode as the memory transfer mode if the amount of
data to be transferred by the memory transfer operation is not
greater than the threshold.

24. The device of claim 21, wherein the one or more pro-
cessors are further configured to select a memory transfer
mode for performing a memory transfer operation with
respect to a fixed, screen-aligned buffer region based on an
amount of overlap a destination region of the memory transfer
operation has with the fixed, screen-aligned buffer region.

25. The device of claim 24, wherein the one or more pro-
cessors are further configured to select the sequential memory
transfer mode as the memory transfer mode if the destination
region fully covers the fixed, screen-aligned buffer region,
and to select the interleave memory transfer mode as the
memory transfer mode if the destination region does not fully
cover the fixed, screen-aligned buffer region.

26. The device of claim 21, wherein the GPU is further
configured to execute a shader program to perform the
memory transfer operation, and wherein the one or more
processors are further configured to select the memory trans-
fer mode based on a determination of whether execution of

US 9,245,496 B2

55

the shader program is likely to be a performance bottleneck
for the memory transfer operation.

27. The device of claim 26, wherein the one or more pro-
cessors are further configured to select the sequential memory
transfer mode as the memory transfer mode in response to
determining that the execution of the shader program is not
likely to be a performance bottleneck for the memory transfer
operation, and to select the interleave memory transfer mode
as the memory transfer mode in response to determining that
the execution of the shader program is likely to be a perfor-
mance bottleneck for the memory transfer operation.

28. The device of claim 21, wherein the GPU is further
configured to execute a shader program to perform the
memory transfer operation, and wherein the one or more
processors are further configured to select the memory trans-
fer mode based on at least one of a size of a shader program
that is used for performing the memory transfer operation and
a complexity of the shader program that is used for perform-
ing the memory transfer operation.

29. The device of claim 28, wherein the one or more pro-
cessors are further configured to select the sequential memory
transfer mode as the memory transfer mode if the at least one
of the size of the shader program and the complexity of the
shader program is less than a threshold, and to select the
interleave memory transfer mode as the memory transfer
mode if the at least one of the size of the shader program and
the complexity of the shader program is not less than the
threshold.

30. The device of claim 21, wherein the GPU is further
configured to perform the memory transfer operation based
on an interleave memory transfer mode in response to the
interleave memory transfer mode being selected as the
memory transfer mode for performing the memory transfer
operation, and to perform the memory transfer operation
based on a sequential memory transfer mode in response to
the sequential memory transfer mode being selected as the
memory transfer mode for performing the memory transfer
operation.

31. The device of claim 30,

wherein the GPU is further configured to cause a read

engine to issue read requests and a write engine to issue
write requests based on a producer-consumer paradigm
when performing the memory transfer operation based
on the interleave memory transfer mode, and

wherein the GPU is further configured to cause the read

engine to issue read requests and the write engine to
issue write requests based on a mutual exclusion para-
digm when performing the memory transfer operation
based on the sequential memory transfer mode.

32. The device of claim 30,

wherein the GPU is further configured to, when performing

the memory transfer operation based on the interleave
memory transfer mode, cause the write engine to issue a
write request in response to the GPU receiving source
data from a memory that is sufficient for issuing the
write request and cause the read engine to issue a read
request in response to the write engine consuming
source data received from the memory that is sufficient
for issuing a write request, and

wherein the GPU is further configured to, when performing

the memory transfer operation based on the sequential
memory transfer mode, cause the read engine and the
write engine to alternate issuing groups of multiple,
consecutive read requests and groups of multiple, con-
secutive read requests write requests during separate
time intervals.

10

15

20

25

30

40

45

50

55

60

65

56

33. The device of claim 30,

wherein the GPU is further configured to, each time source
data that is sufficient to issue a write request for the
memory transfer operation is received by the GPU from
a memory, consume, with the write engine, the respec-
tive source data without waiting for additional source
data to be subsequently received for at least one other
write request when performing the memory transfer
operation based on the interleave memory transfer
mode, and

wherein the GPU is further configured to, for atleast part of

the memory transfer operation, in response to the GPU
receiving, from the memory, source data that is sufficient
to issue a write request for the memory transfer opera-
tion, deferring, with the write engine, consumption of
the source data until additional source data is subse-
quently received that is sufficient to issue at least one
other write request when performing the memory trans-
fer operation based on the sequential memory transfer
mode.

34. The device of claim 30,

wherein the GPU is further configured to, each time a write

engine consumes source data that is sufficient to issue a
write request for the memory transfer operation, issuing,
with a read engine, a read request without waiting for
additional source data to be subsequently consumed by
the write engine for at least one other write request when
performing the memory transfer operation based on the
interleave memory transfer mode, and

wherein the GPU is further configured to, for atleast part of

the memory transfer operation, in response to the write
engine consuming source data that is sufficient to issue a
write request for the memory transfer operation, defer-
ring, with the read engine, issuance of a subsequent read
request until source data is subsequently consumed by
the write engine that is sufficient to issue at least one
other write request when performing the memory trans-
fer operation based on the sequential memory transfer
mode.

35. The device of claim 21, wherein the GPU comprises a
buffer configured to store source data received in response to
read requests issued by the GPU to the memory,

wherein the GPU is further configured to, when performing

the memory transfer operation based on the interleave

memory transfer mode:

issue one or more read requests;

place source data received from the memory in response
to the plurality of read requests into the buffer;

for each of the plurality of read requests, in response to
the source data being placed in the buffer for a respec-
tive one of the plurality of read requests, consume the
source data placed in the buffer and issuing a write
request based on the consumed source data; and

foreach of a plurality of write requests, in response to the
source data being consumed from the buffer for a
respective one of the write requests, issue a subse-
quent read request, and

wherein the GPU is further configured to, when performing

the memory transfer operation based on the sequential

memory transfer mode:

issue a plurality of read requests;

place source data received from the memory in response
to the plurality of read requests into the buffer;

cease to issue read requests in response to detecting that
enough read requests have been issued to fill the
buffer;

US 9,245,496 B2

57

consume source data in the buffer and issue a plurality of
write requests based on the consumed source data in
response to detecting that the buffer is full;

cease to consume source data in the buffer and to issue
write requests in response detecting that the buffer is
empty; and

resume issuance of read requests in response to detect-
ing that the buffer is empty.

36. The device of claim 21, wherein the GPU is further
configured to perform a first part of the memory transfer
operation using a first memory transfer mode selected from
the set of at least two different memory transfer modes, and to
perform a second part of the memory transfer operation using
a second memory transfer mode selected from the set of at
least two different memory transfer modes.

37. The device of claim 21, wherein the GPU is further
configured to select a cache line size of a cache that is used for
buffering source data retrieved from a memory during the
memory transfer operation based on the selected memory
transfer mode, and to configure the cache for the memory
transfer operation based on the selected cache line size.

38. The device of claim 37, wherein the GPU is further
configured to select a cache line size that is equal to an entire
capacity of the cache in response to the sequential memory
transfer mode being selected as the memory transfer mode for
performing the memory transfer operation, and to select a
cache line size that is less than the entire capacity of the cache
in response to the interleave memory transfer mode being
selected as the memory transfer mode for performing the
memory transter operation.

39. The device of claim 21, wherein the one or more pro-
cessors comprise the GPU, and wherein the GPU is further
configured to select the memory transfer mode for perform-
ing the at least part of a memory transfer operation.

40. The device of claim 21, wherein the one or more pro-
cessors comprise a CPU configured to select the memory
transfer mode for performing the at least part of the memory
transfer operation, and to cause the GPU to perform the
memory transfer operation based on the memory transfer
mode.

41. The device of claim 21, wherein the device comprises
a wireless communication device.

42. The device of claim 21, wherein the device comprises
a mobile phone handset.

43. An apparatus comprising:

means for selecting a memory transfer mode for perform-

ing at least part of a memory transfer operation, the
memory transfer mode being selected from a set of at
least two different memory transfer modes that includes
an interleave memory transfer mode and a sequential
memory transfer mode, wherein the sequential memory
transfer mode includes alternate issuing of groups of
multiple, consecutive read requests and groups of mul-
tiple, consecutive write requests during separate time
intervals; and

means for performing the memory transfer operation based

on the selected memory transfer mode.

44. The apparatus of claim 43, wherein the means for
selecting the memory transfer mode comprises:

means for selecting the memory transfer mode based on at

least one of an amount of data to be transferred by the
memory transfer operation, a size of a shader program
that is used for performing the memory transfer opera-

5

35

40

50

55

60

58

tion, and a complexity of the shader program that is used
for performing the memory transfer operation.

45. The apparatus of claim 43, wherein the means for
selecting the memory transfer mode comprises:

means for selecting a memory transfer mode for perform-

ing a memory transfer operation with respect to a fixed,
screen-aligned buffer region based on an amount of
overlap a destination region of the memory transfer
operation has with the fixed, screen-aligned buffer
region.

46. The apparatus of claim 43,

wherein the means for performing the memory transfer

operation comprises a graphics processing unit (GPU),
and

wherein the means for selecting the memory transfer mode

comprises at least one of a CPU and the GPU.
47. A computer-readable storage medium storing instruc-
tions that, when executed, cause one or more processors to:
select a memory transfer mode for performing at least part
of a memory transfer operation, the memory transfer
mode being selected from a set of at least two different
memory transfer modes that includes an interleave
memory transfer mode and a sequential memory transfer
mode, wherein the sequential memory transfer mode
includes alternate issuing of groups of multiple, con-
secutive read requests and groups of multiple, consecu-
tive write requests during separate time intervals; and

perform the memory transfer operation based on the
selected memory transfer mode.

48. The computer-readable storage medium of claim 47,
wherein the instructions that, when executed, cause the one or
more processors to select the memory transfer mode com-
prise instructions that, when executed, cause the one or more
processors to:

select the memory transfer mode based on atleast one of an

amount of data to be transferred by the memory transfer
operation, a size of a shader program that is used for
performing the memory transfer operation, and a com-
plexity of a shader program that is used for performing
the memory transfer operation.

49. The computer-readable storage medium of claim 47,
wherein the instructions that, when executed, cause the one or
more processors to select the memory transfer mode com-
prise instructions that, when executed, cause the one or more
processors to:

select a memory transfer mode for performing a memory

transfer operation with respect to a fixed, screen-aligned
buffer region based on an amount of overlap a destina-
tion region of the memory transfer operation has with the
fixed, screen-aligned buffer region.

50. The computer-readable storage medium of claim 47,

wherein the instructions that, when executed, cause the one

or more processors to perform the memory transfer
operation comprise instructions that, when executed,
cause a graphics processing unit (GPU) to perform the
memory transfer operation based on the selected
memory transfer mode, and

wherein the instructions that, when executed, cause the one

or more processors to select the memory transfer mode
comprise instructions that, when executed, cause at least
one of a CPU and the GPU to select the memory transfer
mode for performing the at least part of a memory trans-
fer operation.

